Flutter人工智能处理插件gemini_ai的使用
Flutter人工智能处理插件gemini_ai的使用
Gemini AI Flutter插件为Flutter开发者提供了一个集成Gemini AI功能的便捷方式,它利用了原生的Android和iOS库。以下是该插件的基本使用方法及示例代码。
安装
首先,在pubspec.yaml
文件中添加依赖:
dependencies:
gemini_ai: ^latest_version
然后运行flutter pub get
来安装依赖。
初始化配置
Generative Model
创建一个生成模型实例:
import 'package:gemini_ai/model/generative_model.dart';
import 'package:gemini_ai/model/generation_config.dart';
import 'package:gemini_ai/model/safety_setting.dart';
import 'package:gemini_ai/enum/block_threshold.dart';
import 'package:gemini_ai/enum/harm_category.dart';
final GenerativeModel generativeModel = GenerativeModel(
modelName: "gemini-pro",
apiKey: "YOUR_API_KEY_HERE",
generationConfig: _generationConfig,
safetySettings: _safetySettings,
);
final GenerationConfig _generationConfig = GenerationConfig(
temperature: 0.9,
topK: 1,
topP: 1,
maxOutputTokens: 2048,
);
final List<SafetySetting> _safetySettings = [
SafetySetting(
HarmCategory.harassment,
BlockThreshold.mediumAndAbove,
),
SafetySetting(
HarmCategory.hateSpeech,
BlockThreshold.mediumAndAbove,
),
SafetySetting(
HarmCategory.sexuallyExplicit,
BlockThreshold.mediumAndAbove,
),
SafetySetting(
HarmCategory.dangerousContent,
BlockThreshold.mediumAndAbove,
),
];
生成内容
调用generateContent
方法生成响应:
import 'package:gemini_ai/gemini_ai.dart';
final GeminiAi _gemini = GeminiAi();
void generateContent() async {
String? content = await _gemini.generateContent(
generativeModel,
"Your message to Gemini",
);
print(content);
}
多模态输入(文本+图片)
如果你需要同时处理文本和图片,可以使用gemini-pro-vision
模型:
final GenerativeModel generativeModelVision = GenerativeModel(
modelName: "gemini-pro-vision",
apiKey: "YOUR_API_KEY_HERE",
generationConfig: _generationConfig,
safetySettings: _safetySettings,
);
String? contentWithImages = await _gemini.generateContent(
generativeModelVision,
"What's different between these pictures?",
images: [imageFile1, imageFile2],
);
聊天功能
构建多轮对话时,使用startChat
方法:
String? chatResponse = await _gemini.startChat(
generativeModel,
"How many paws are in my house?",
history: [
ChatMessage(Role.user, ["Hello, I have 2 dogs in my house."]),
ChatMessage(Role.model, ["Great to meet you. What would you like to know?"]),
],
);
流式响应
为了获得更快的交互体验,可以使用流式API:
_gemini.generateContentStream(
generativeModel,
_inputController.text.trim(),
).listen((content) {
print(content);
});
完整示例Demo
以下是一个完整的Flutter应用示例,展示了如何集成Gemini AI插件进行简单的文本生成:
import 'package:flutter/material.dart';
import 'package:gemini_ai/gemini_ai.dart';
import 'package:gemini_ai/enum/block_threshold.dart';
import 'package:gemini_ai/enum/harm_category.dart';
import 'package:gemini_ai/model/generation_config.dart';
import 'package:gemini_ai/model/generative_model.dart';
import 'package:gemini_ai/model/safety_setting.dart';
class GeminiConfig {
static final GenerativeModel generativeModel = GenerativeModel(
modelName: "gemini-pro",
apiKey: "YOUR_API_KEY_HERE",
generationConfig: _generationConfig,
safetySettings: _safetySettings,
);
static final GenerationConfig _generationConfig = GenerationConfig(
temperature: 0.9,
topK: 1,
topP: 1,
maxOutputTokens: 2048,
);
static final List<SafetySetting> _safetySettings = [
SafetySetting(
HarmCategory.harassment,
BlockThreshold.mediumAndAbove,
),
SafetySetting(
HarmCategory.hateSpeech,
BlockThreshold.mediumAndAbove,
),
SafetySetting(
HarmCategory.sexuallyExplicit,
BlockThreshold.mediumAndAbove,
),
SafetySetting(
HarmCategory.dangerousContent,
BlockThreshold.mediumAndAbove,
),
];
}
void main() {
runApp(const MyApp());
}
class MyApp extends StatelessWidget {
const MyApp({super.key});
[@override](/user/override)
Widget build(BuildContext context) {
return const MaterialApp(
home: HomePage(),
);
}
}
enum _State { idle, loading }
class HomePage extends StatefulWidget {
const HomePage({super.key});
[@override](/user/override)
State<HomePage> createState() => _HomePageState();
}
class _HomePageState extends State<HomePage> {
final TextEditingController _inputController = TextEditingController();
final GeminiAi _gemini = GeminiAi();
String _content = "";
_State _state = _State.idle;
[@override](/user/override)
Widget build(BuildContext context) {
return Scaffold(
appBar: AppBar(
title: const Text("Gemini Demo"),
),
body: SafeArea(
child: _buildBody(),
),
);
}
Widget _buildBody() {
return Column(
children: [
Expanded(
child: _state == _State.loading
? const Center(child: CircularProgressIndicator())
: Padding(
padding: const EdgeInsets.all(16.0),
child: Text(_content),
),
),
Row(
children: [
Expanded(
child: Padding(
padding: const EdgeInsets.all(8),
child: TextField(
controller: _inputController,
decoration: InputDecoration(
labelText: "Ask to Gemini...",
border: OutlineInputBorder(
borderRadius: BorderRadius.circular(12),
),
),
),
),
),
IconButton(
icon: const Icon(Icons.send),
onPressed: _generateContent,
),
],
),
],
);
}
void _generateContent() async {
setState(() {
_state = _State.loading;
});
String? content = await _gemini.generateContent(
GeminiConfig.generativeModel,
_inputController.text.trim(),
);
if (content != null) {
setState(() {
_content = content;
_state = _State.idle;
});
}
}
}
更多关于Flutter人工智能处理插件gemini_ai的使用的实战系列教程也可以访问 https://www.itying.com/category-92-b0.html
更多关于Flutter人工智能处理插件gemini_ai的使用的实战系列教程也可以访问 https://www.itying.com/category-92-b0.html
当然,以下是一个关于如何在Flutter项目中使用gemini_ai
插件进行人工智能处理的示例代码。gemini_ai
是一个假想的插件名称,用于说明目的,因为实际上可能没有直接名为gemini_ai
的官方Flutter插件。不过,这个示例将展示如何在Flutter中集成和使用一个假想的人工智能处理插件。
首先,确保你已经在pubspec.yaml
文件中添加了gemini_ai
插件的依赖(请注意,这里gemini_ai
是虚构的,你需要替换为实际存在的AI插件名称):
dependencies:
flutter:
sdk: flutter
gemini_ai: ^0.1.0 # 假设的版本号,实际使用时请替换为真实版本号
然后,运行flutter pub get
来安装依赖。
接下来,在你的Flutter项目中创建一个使用gemini_ai
插件的示例页面。假设这个插件提供了一个analyzeText
方法用于文本分析。
import 'package:flutter/material.dart';
import 'package:gemini_ai/gemini_ai.dart'; // 导入假想的gemini_ai插件
void main() {
runApp(MyApp());
}
class MyApp extends StatelessWidget {
@override
Widget build(BuildContext context) {
return MaterialApp(
title: 'Gemini AI Demo',
theme: ThemeData(
primarySwatch: Colors.blue,
),
home: AnalyzeTextScreen(),
);
}
}
class AnalyzeTextScreen extends StatefulWidget {
@override
_AnalyzeTextScreenState createState() => _AnalyzeTextScreenState();
}
class _AnalyzeTextScreenState extends State<AnalyzeTextScreen> {
final TextEditingController _controller = TextEditingController();
String _result = '';
@override
Widget build(BuildContext context) {
return Scaffold(
appBar: AppBar(
title: Text('Gemini AI Text Analysis'),
),
body: Padding(
padding: const EdgeInsets.all(16.0),
child: Column(
crossAxisAlignment: CrossAxisAlignment.start,
children: <Widget>[
TextField(
controller: _controller,
decoration: InputDecoration(
labelText: 'Enter text to analyze',
),
maxLines: 5,
),
SizedBox(height: 20),
ElevatedButton(
onPressed: () async {
setState(() {
_result = 'Analyzing...';
});
try {
// 假设gemini_ai插件提供了一个analyzeText方法
var analysis = await GeminiAi.analyzeText(_controller.text);
setState(() {
_result = 'Analysis: ${analysis.result}'; // 假设analysis对象有一个result属性
});
} catch (e) {
setState(() {
_result = 'Error: ${e.message}';
});
}
},
child: Text('Analyze Text'),
),
SizedBox(height: 20),
Text(_result, style: TextStyle(fontSize: 18)),
],
),
),
);
}
@override
void dispose() {
_controller.dispose();
super.dispose();
}
}
在这个示例中,我们创建了一个简单的Flutter应用,它有一个文本输入框和一个按钮。用户可以在文本输入框中输入文本,然后点击按钮来触发文本分析。我们假设GeminiAi
类有一个静态方法analyzeText
,它接受一个字符串参数并返回一个包含分析结果的对象。
请注意,由于gemini_ai
是一个假想的插件,上述代码中的GeminiAi.analyzeText
方法和返回的对象结构都是虚构的。在实际使用中,你需要参考实际AI插件的文档来了解如何调用其方法和处理返回结果。
此外,确保在实际项目中处理错误和异常情况,并根据需要优化用户体验。