Flutter主体分割插件google_mlkit_subject_segmentation的使用
Flutter主体分割插件google_mlkit_subject_segmentation的使用
Google’s ML Kit Subject Segmentation 是一个用于Flutter的插件,它可以帮助开发者轻松地从图片中分离出多个主体(如人、宠物或物体),从而实现贴纸创建、背景替换或添加酷炫效果等用途。本文将详细介绍如何在Flutter项目中使用这个插件,并提供一个完整的示例Demo。
插件特性
- 支持多主体分割:为每个单独的主体提供掩码和位图。
- 主体识别:支持对象、宠物和人类的识别。
- 设备端处理:所有处理都在设备上完成,保护用户隐私且无需网络连接。
注意事项
该功能目前仅适用于Android平台,并处于Beta阶段。请访问Google的官方网站获取最新信息。
环境要求
Android
minSdkVersion
: 24targetSdkVersion
: 33compileSdkVersion
: 34
需要在AndroidManifest.xml
文件中添加模型下载声明:
<application ...>
...
<meta-data
android:name="com.google.mlkit.vision.DEPENDENCIES"
android:value="subject_segment">
<!-- 若要使用多个模型,请设置为:android:value="subject_segment,model2,model3" -->
</application>
使用步骤
创建InputImage
实例
首先,你需要创建一个InputImage
实例,具体方法可以参考这里。
final InputImage inputImage;
创建SubjectSegmenter
实例
接下来,创建一个SubjectSegmenter
实例。
final options = SubjectSegmenterOptions();
final segmenter = SubjectSegmenter(options: options);
处理图像
然后,调用processImage
方法来处理图像。
final result = await segmenter.processImage(inputImage);
释放资源
最后,记得关闭segmenter
以释放资源。
segmenter.close();
完整示例代码
下面是一个简单的完整示例,展示了如何在Flutter应用中使用google_mlkit_subject_segmentation
插件。
import 'package:flutter/material.dart';
import 'package:google_mlkit_subject_segmentation/google_mlkit_subject_segmentation.dart';
void main() {
runApp(MyApp());
}
class MyApp extends StatelessWidget {
[@override](/user/override)
Widget build(BuildContext context) {
return MaterialApp(
title: 'Subject Segmentation Demo',
theme: ThemeData(
primarySwatch: Colors.blue,
),
home: MyHomePage(),
);
}
}
class MyHomePage extends StatefulWidget {
[@override](/user/override)
_MyHomePageState createState() => _MyHomePageState();
}
class _MyHomePageState extends State<MyHomePage> {
late final SubjectSegmenter _segmenter;
[@override](/user/override)
void initState() {
super.initState();
final options = SubjectSegmenterOptions();
_segmenter = SubjectSegmenter(options: options);
}
[@override](/user/override)
void dispose() {
_segmenter.close();
super.dispose();
}
Future<void> _processImage(InputImage inputImage) async {
final result = await _segmenter.processImage(inputImage);
// Handle the result, e.g., display it on the screen or modify the image based on the segmentation mask.
}
[@override](/user/override)
Widget build(BuildContext context) {
return Scaffold(
appBar: AppBar(
title: Text('Subject Segmentation Demo'),
),
body: Center(
child: ElevatedButton(
onPressed: () async {
// Example of how to get an InputImage from a file picker or camera.
// You need to implement this part yourself.
// final inputImage = await getImageFromSource();
// await _processImage(inputImage);
},
child: Text('Process Image'),
),
),
);
}
}
更多关于Flutter主体分割插件google_mlkit_subject_segmentation的使用的实战系列教程也可以访问 https://www.itying.com/category-92-b0.html
更多关于Flutter主体分割插件google_mlkit_subject_segmentation的使用的实战系列教程也可以访问 https://www.itying.com/category-92-b0.html
当然,下面是一个关于如何在Flutter项目中使用google_mlkit_subject_segmentation
插件来进行主体分割的示例代码。这个插件利用Google的ML Kit进行图像的主体分割,可以识别并分离出图像中的主要对象。
首先,确保你的Flutter项目已经设置好了,并且已经添加了google_mlkit_subject_segmentation
依赖。你可以在pubspec.yaml
文件中添加以下依赖:
dependencies:
flutter:
sdk: flutter
google_mlkit_subject_segmentation: ^latest_version # 请替换为最新版本号
然后运行flutter pub get
来安装依赖。
接下来,你可以在你的Flutter应用中实现主体分割功能。以下是一个完整的示例代码:
import 'package:flutter/material.dart';
import 'package:google_mlkit_subject_segmentation/google_mlkit_subject_segmentation.dart';
import 'package:image_picker/image_picker.dart';
void main() {
runApp(MyApp());
}
class MyApp extends StatelessWidget {
@override
Widget build(BuildContext context) {
return MaterialApp(
home: SubjectSegmentationScreen(),
);
}
}
class SubjectSegmentationScreen extends StatefulWidget {
@override
_SubjectSegmentationScreenState createState() => _SubjectSegmentationScreenState();
}
class _SubjectSegmentationScreenState extends State<SubjectSegmentationScreen> {
final ImagePicker _picker = ImagePicker();
File? _imageFile;
Uint8List? _segmentedImage;
@override
Widget build(BuildContext context) {
return Scaffold(
appBar: AppBar(
title: Text('Google ML Kit Subject Segmentation'),
),
body: Padding(
padding: const EdgeInsets.all(16.0),
child: Column(
children: [
_imageFile == null
? Text('No image selected.')
: Image.file(_imageFile!),
SizedBox(height: 20),
ElevatedButton(
onPressed: _pickImage,
child: Text('Pick Image'),
),
SizedBox(height: 20),
ElevatedButton(
onPressed: _segmentImage,
child: Text('Segment Image'),
isEnabled: _imageFile != null,
),
SizedBox(height: 20),
if (_segmentedImage != null)
Image.memory(_segmentedImage!),
],
),
),
);
}
Future<void> _pickImage() async {
final pickedFile = await _picker.pickImage(source: ImageSource.camera);
if (pickedFile != null) {
setState(() {
_imageFile = File(pickedFile.path);
});
}
}
Future<void> _segmentImage() async {
if (_imageFile == null) return;
final inputImage = InputImage.fromFilePath(
filePath: _imageFile!.path,
includeExifData: true,
);
final result = await SubjectSegmentationProcessor().process(inputImage);
if (result != null && result.segmentationMask != null) {
final mask = result.segmentationMask!;
final originalImageBytes = await _imageFile!.readAsBytes();
final originalImage = Image.decodeMemory(originalImageBytes)!;
final width = originalImage.width;
final height = originalImage.height;
// Create a Bitmap to draw the segmented image
final segmentedBitmap = Bitmap.createBitmap(width, height, Bitmap.Config.ARGB_8888);
final canvas = Canvas(segmentedBitmap);
final paint = Paint();
// Draw the original image
canvas.drawBitmap(originalImage.toBitmap(), 0.0f, 0.0f, paint);
// Draw the mask on top of the original image
for (int y = 0; y < height; y++) {
for (int x = 0; x < width; x++) {
final int pixel = mask.getPixel(x, y);
final alpha = Color.red(pixel); // Assuming the mask is stored in red channel
if (alpha > 128) { // Threshold to decide if the pixel is part of the subject
paint.color = Color.WHITE.withAlpha(255); // Set to white or any desired color
} else {
paint.color = Color.TRANSPARENT; // Set to transparent
}
canvas.drawColor(paint.color.value, BlendMode.clear); // This is simplified, you might need custom drawing logic
}
}
// Convert Bitmap back to Uint8List for Flutter Image widget
final outputStream = ByteArrayOutputStream();
segmentedBitmap.compress(Bitmap.CompressFormat.PNG, 100, outputStream);
final segmentedImageBytes = outputStream.toByteArray();
setState(() {
_segmentedImage = segmentedImageBytes;
});
}
}
}
注意:
- 这个示例代码是一个简化的版本,用于演示如何进行主体分割。实际项目中,你可能需要更复杂的逻辑来处理分割后的图像。
- 由于Flutter和Android/iOS平台的差异,上述代码中的图像处理和Bitmap操作部分可能需要针对平台进行调整。特别是
Bitmap
和Canvas
部分,你可能需要使用Flutter的原生通道(Platform Channels)或者第三方库来在Flutter中直接操作图像。 - 上述代码假设分割掩码存储在红色通道中,并且使用简单的阈值(128)来判断像素是否属于主体。这可能需要根据你的具体需求进行调整。
google_mlkit_subject_segmentation
插件的API可能会随着版本的更新而变化,请参考最新的官方文档。
希望这个示例代码能帮助你在Flutter项目中实现主体分割功能!