Flutter遗传进化神经网络插件genetically_evolving_neural_network的应用
Flutter遗传进化神经网络插件genetically_evolving_neural_network的应用
1. 插件概述
genetically_evolving_neural_network
是一个Flutter插件,它模拟了基因进化的过程,通过交叉繁殖和基因突变来优化神经网络。每个实体(Entity)由一个神经网络组成,其“DNA”可以视为神经网络的结构,而“基因”则是神经网络中的感知器(Perceptrons)。通过评估每个实体的表现并选择表现较好的实体进行繁殖,插件实现了进化的过程。
2. 工作原理
- 初始种群生成:插件会生成一个随机的初始种群,每个实体包含一个随机生成的神经网络。
- 适应度评分:每个神经网络都会根据自定义的
FitnessService
进行评估,获得一个适应度评分(fitness score),评分越高表示该神经网络的表现越好。 - 繁殖与变异:表现较好的实体有更高的概率被选为父母,生成下一代实体。在繁殖过程中,父母的基因会被组合,并有一定概率发生突变。
- 进化循环:这个过程会不断重复,逐渐优化种群中的神经网络。
3. 使用步骤
3.1 定义 FitnessService
FitnessService
是用来评估每个实体表现的关键部分。你需要根据具体的任务定义一个 FitnessService
,例如判断一个数字是正数还是负数、预测下一步棋的走法等。
/// The inputs for this Neural Network, from -1 to 1 in increments of 0.1.
List<double> get inputs => List.generate(10, (index) => index * 0.1)
..addAll(List.generate(9, (index) => (index + 1) * -0.1));
/// The scoring function that will be used to evolve entities of a population
class PositiveNumberFitnessService extends GENNFitnessService {
@override
Future<double> gennScoringFunction({
required GENNNeuralNetwork neuralNetwork,
}) async {
// Calculate how many correct guesses were made
return inputs.fold(0, (previousValue, input) {
final guess = neuralNetwork.guess(inputs: [input])[0];
// Only add a point if the neural network guesses correctly
if ((input > 0 && guess > 0) || (input <= 0 && guess == 0)) {
return previousValue + 1;
}
return previousValue;
}).toDouble();
}
}
3.2 配置 GeneticEvolutionConfig
GeneticEvolutionConfig
用于定义种群的大小、突变率等参数。你可以根据任务的需求调整这些参数。
final config = GENNGeneticEvolutionConfig(
numInitialInputs: 1, // 1 input into neural network
numOutputs: 1, // 1 output from neural network
layerMutationRate: 0.1, // 10% chance to add/remove layer to network
perceptronMutationRate: 0.2, // 20% chance to add/remove perceptron to layer
mutationRate: 0.05, // 5% chance to mutate an existing perceptron
);
3.3 创建 GENN
对象
使用 FitnessService
和 GeneticEvolutionConfig
创建 GENN
对象,并开始进化过程。
final genn = GENN.create(
config: config,
fitnessService: PositiveNumberFitnessService(),
);
// 获取下一代实体
final nextGen = await genn.nextGeneration();
4. 示例代码
以下是一个完整的示例,展示了如何使用 genetically_evolving_neural_network
插件来构建一个简单的正负数分类器。
import 'package:flutter/material.dart';
import 'package:genetically_evolving_neural_network/genetically_evolving_neural_network.dart';
/// The inputs for this Neural Network, from -1 to 1 in increments of 0.1.
List<double> get inputs => List.generate(10, (index) => index * 0.1)
..addAll(List.generate(9, (index) => (index + 1) * -0.1));
/// The scoring function that will be used to evolve entities of a population
class PositiveNumberFitnessService extends GENNFitnessService {
@override
Future<double> gennScoringFunction({
required GENNNeuralNetwork neuralNetwork,
}) async {
// Calculate how many correct guesses were made
return inputs.fold(0, (previousValue, input) {
final guess = neuralNetwork.guess(inputs: [input])[0];
// Only add a point if the neural network guesses correctly
if ((input > 0 && guess > 0) || (input <= 0 && guess == 0)) {
return previousValue + 1;
}
return previousValue;
}).toDouble();
}
}
void main() {
runApp(const MyApp());
}
class MyApp extends StatefulWidget {
const MyApp({super.key});
@override
State<MyApp> createState() => _MyAppState();
}
class _MyAppState extends State<MyApp> {
/// Represents the FitnessService used to drive this GENN example.
final GENNFitnessService fitnessService = PositiveNumberFitnessService();
/// The current generation of Neural Networks.
GENNGeneration? generation;
/// The Genetically Evolving Neural Network object.
late final GENN genn;
@override
void initState() {
// Declare a config with specific mutation rates.
final config = GENNGeneticEvolutionConfig(
populationSize: 20,
numOutputs: 1,
mutationRate: 0.1,
numInitialInputs: 1,
layerMutationRate: 0.25,
perceptronMutationRate: 0.4,
);
// Create the GENN object from the incoming config and fitness service.
genn = GENN.create(
config: config,
fitnessService: fitnessService,
);
// Initialize the first generation
genn.nextGeneration().then((value) {
setState(() {
generation = value;
});
});
super.initState();
}
@override
Widget build(BuildContext context) {
final generation = this.generation;
if (generation == null) {
return const CircularProgressIndicator();
}
return MaterialApp(
title: 'GENN Example',
home: Scaffold(
body: Center(
child: Column(
mainAxisAlignment: MainAxisAlignment.center,
children: [
Text('代数: ${generation.wave.toString()}'),
Text('最高得分: '
'${generation.population.topScoringEntity.fitnessScore} '
'总分: ${inputs.length}.01'),
Text('最高得分实体的层数: '
'${generation.population.topScoringEntity.maxLayerNum + 1}'),
Text('最高得分实体的感知器数量: '
'${generation.population.topScoringEntity.dna.genes.length}'),
],
),
),
floatingActionButton: FloatingActionButton.extended(
label: const Text('下一世代'),
onPressed: () {
// Set the next Generation to be displayed
genn.nextGeneration().then((value) {
setState(() {
this.generation = value;
});
});
},
),
),
);
}
}
5. 更复杂的示例
除了简单的正负数分类器,genetically_evolving_neural_network
还可以用于解决更复杂的问题,例如:
- 逻辑异或(Logical XOR):判断输入是否满足逻辑异或条件,即只有一个输入为1.0,其他输入为0.0时返回正确结果。
- 图像数字分类器:识别像素化图像所代表的数字(0-9)。
5.1 逻辑异或示例
/// This fitness service will be used to score a logical XOR calculator. The
/// Neural Network should only be rewarded for guessing "yes" when there is a
/// single input of 1.0 and both other inputs are 0.
class LogicalXORGENNVisualizationFitnessService extends GENNFitnessService {
@override
Future<double> gennScoringFunction({
required GENNNeuralNetwork neuralNetwork,
}) async {
// Collect all the guesses from this NeuralNetwork
final guesses = getNeuralNetworkGuesses(neuralNetwork: neuralNetwork);
// Declare a variable to store the sum of all errors
var errorSum = 0.0;
// Cycle through each guess to check its validity
for (int i = 0; i < guesses.length; i++) {
// Calculate the error from this guess
final error = (targetOutputsList[i] == guesses[i]) ? 0 : 1;
// Add this error to the errorSum
errorSum += error;
}
// Calculate the difference between a perfect score (8) and the total
// errors. A perfect score would mean zero errors with 8 correct answers,
// meaning a perfect score would be 8.
final diff = inputList.length - errorSum;
// To make the better performing Entities stand out more in this population,
// use the following equation to calculate the FitnessScore.
//
// 4 to the power of diff
return pow(4, diff).toDouble();
}
}
5.2 图像数字分类器示例
/// This class will be used to score a Number Classifier in tandem with a
/// Neural Network.
class NumberClassifierFitnessService extends GENNFitnessService {
@override
Future<double> gennScoringFunction({
required GENNNeuralNetwork neuralNetwork,
}) async {
// Collect all the guesses from this NeuralNetwork
final guesses = getNeuralNetworkGuesses(neuralNetwork: neuralNetwork);
// Declare a variable to store the sum of points scored
int points = 0;
// Cycle through each guess to check its validity
for (int i = 0; i < guesses.length; i++) {
final NaturalNumber targetOutput = targetOutputsList[i];
final NaturalNumber guessOutput = guesses[i];
if (targetOutput == guessOutput) {
// Guessing correctly will give you a point.
points++;
}
}
// To make the better performing Entities stand out more in this population,
// use the following equation to calculate the FitnessScore.
//
// 4 to the power of points
return pow(4, points).toDouble();
}
}
6. 文件解析
你还可以将特定的世代写入文件,并从文件中读取特定的世代。
- 写入文件:
genn.writeGenerationToFile();
- 从文件加载:
genn.loadGenerationFromFile(wave: 10);
更多关于Flutter遗传进化神经网络插件genetically_evolving_neural_network的应用的实战系列教程也可以访问 https://www.itying.com/category-92-b0.html
更多关于Flutter遗传进化神经网络插件genetically_evolving_neural_network的应用的实战系列教程也可以访问 https://www.itying.com/category-92-b0.html
在Flutter中,虽然直接集成遗传进化神经网络(Genetically Evolving Neural Network, GENN)可能不是最常见的任务,但可以通过一些插件和原生代码桥接来实现这一功能。genetically_evolving_neural_network
并不是一个广泛认知的Flutter插件,因此假设你指的是一个自定义的或者类似功能的实现,我们可以探索如何使用Flutter与原生代码(如Dart调用C++或Python实现的遗传进化神经网络)进行交互。
由于Flutter主要使用Dart语言编写,而复杂的神经网络和遗传算法通常在性能更高的语言中实现(如C++或Python),我们可以利用Flutter的Platform Channels来与原生代码通信。
以下是一个简化的示例,展示了如何在Flutter中通过Platform Channels调用原生代码(假设我们在Android上使用Java/Kotlin实现了一个简单的遗传进化神经网络,iOS上类似)。
1. 设置Flutter项目
首先,创建一个新的Flutter项目:
flutter create genn_flutter_app
cd genn_flutter_app
2. 在Android端实现遗传进化神经网络
在android/app/src/main/java/com/example/genn_flutter_app/
目录下创建一个新的Java类,例如GeneticNeuralNetwork.java
:
package com.example.genn_flutter_app;
import android.os.Parcel;
import android.os.Parcelable;
import java.util.ArrayList;
import java.util.List;
import java.util.Random;
// 假设的简单神经网络节点类
class NeuralNode implements Parcelable {
double[] weights;
protected NeuralNode(Parcel in) {
weights = in.createDoubleArray();
}
public static final Creator<NeuralNode> CREATOR = new Creator<NeuralNode>() {
@Override
public NeuralNode createFromParcel(Parcel in) {
return new NeuralNode(in);
}
@Override
public NeuralNode[] newArray(int size) {
return new NeuralNode[size];
}
};
public NeuralNode(int numInputs) {
weights = new double[numInputs];
Random rand = new Random();
for (int i = 0; i < numInputs; i++) {
weights[i] = rand.nextDouble();
}
}
@Override
public int describeContents() {
return 0;
}
@Override
public void writeToParcel(Parcel dest, int flags) {
dest.writeDoubleArray(weights);
}
}
public class GeneticNeuralNetwork {
// 简单的遗传算法示例,这里省略了详细的实现
public List<NeuralNode> evolve(List<NeuralNode> population, int generations) {
// 进化逻辑...
// 这里只是简单地返回原始种群作为示例
return population;
}
}
3. 创建MethodChannel进行通信
在MainActivity.java
中设置MethodChannel:
package com.example.genn_flutter_app;
import android.content.Context;
import android.os.Bundle;
import android.os.Parcelable;
import androidx.annotation.NonNull;
import io.flutter.embedding.android.FlutterActivity;
import io.flutter.embedding.engine.FlutterEngine;
import io.flutter.plugin.common.BinaryMessenger;
import io.flutter.plugin.common.MethodChannel;
import io.flutter.plugin.common.StandardMessageCodec;
import java.util.ArrayList;
import java.util.List;
public class MainActivity extends FlutterActivity {
private static final String CHANNEL = "com.example.genn_flutter_app/genn";
@Override
public void configureFlutterEngine(@NonNull FlutterEngine flutterEngine) {
super.configureFlutterEngine(flutterEngine);
new MethodChannel(flutterEngine.getDartExecutor().getBinaryMessenger(), CHANNEL)
.setMethodCallHandler(
(call, result) -> {
if (call.method.equals("evolveNetwork")) {
List<Parcelable> populationList = call.argument("population");
int generations = call.argument("generations");
GeneticNeuralNetwork genn = new GeneticNeuralNetwork();
List<NeuralNode> evolvedPopulation = new ArrayList<>();
for (Parcelable p : populationList) {
evolvedPopulation.add((NeuralNode) p);
}
evolvedPopulation = genn.evolve(evolvedPopulation, generations);
result.success(evolvedPopulation);
} else {
result.notImplemented();
}
}
);
}
}
注意:由于NeuralNode
实现了Parcelable
,我们可以通过MethodCall
传递这些对象。然而,这里有一个限制,即Parcelable
不能直接在Dart中使用,你可能需要在Dart端定义一个对应的类,并在传递数据时进行适当的序列化和反序列化。
4. 在Dart端调用原生方法
在lib/main.dart
中:
import 'dart:typed_data';
import 'dart:ui' as ui;
import 'package:flutter/material.dart';
import 'package:flutter/services.dart';
class NeuralNode {
List<double> weights;
NeuralNode({required this.weights});
factory NeuralNode.fromMap(Map<String, dynamic> map) {
return NeuralNode(weights: List<double>.from(map['weights']!));
}
Map<String, dynamic> toMap() {
return {'weights': weights};
}
}
void main() {
const MethodChannel _channel = MethodChannel('com.example.genn_flutter_app/genn');
List<NeuralNode> createInitialPopulation() {
// 创建初始种群...
return [NeuralNode(weights: [0.1, 0.2, 0.3]), NeuralNode(weights: [0.4, 0.5, 0.6])];
}
void evolveNetwork() async {
List<NeuralNode> population = createInitialPopulation();
List<Map<String, dynamic>> populationMap = population.map((node) => node.toMap()).toList();
try {
final List<dynamic> result = await _channel.invokeMethod('evolveNetwork', {
'population': populationMap,
'generations': 10,
});
// 处理返回的结果...
print(result);
} on PlatformException catch (e) {
print("Failed to invoke: '${e.message}'.");
}
}
runApp(MaterialApp(
home: Scaffold(
appBar: AppBar(
title: const Text('Flutter Genetic Evolving Neural Network'),
),
body: Center(
child: ElevatedButton(
onPressed: evolveNetwork,
child: Text('Evolve Network'),
),
),
),
));
}
注意:上面的Dart代码尝试直接传递NeuralNode
的映射到原生代码,但由于Parcelable
的限制,你可能需要实现一个更复杂的数据转换逻辑,比如将NeuralNode
转换为JSON或其他可以在Dart和原生代码之间安全传输的格式。
结论
这个示例提供了一个框架,展示了如何在Flutter应用中通过Platform Channels与原生代码进行交互,以实现遗传进化神经网络的功能。然而,实际的实现将涉及更多细节,如数据序列化和反序列化、性能优化、错误处理等。根据具体的神经网络和遗传算法实现,你可能需要对上述代码进行大量修改和扩展。