HarmonyOS 鸿蒙Next基于加解密算法框架的常见规格问题
HarmonyOS 鸿蒙Next基于加解密算法框架的常见规格问题
场景描述
对于加解密在HarmonyOS和安卓相互转换,以及HarmonyOS、安卓互调的各种场景下使用密文密钥的问题。
应用经常会遇到如下的业务诉求:
场景一:SM2加解密,安卓和HarmonyOS的sm2密文,密钥格式不符,不能直接使用,需要一定的转换。
场景二:AES加解密,缺少基础的加解密示例,在原有的文档示例基础上不知道如何修改。
方案描述
场景一:
对于使用sm2加解密,安卓生成的密钥拿到HarmonyOS使用如何导入,密文如何去转换、HarmonyOS生成的密文如何拿到安卓去解密。
方案
1、对于传入的密钥中公钥是带04的的十六进制的130位字符串,在传入的时候,密钥参数对应的格式为 04+x+y,x和y的长度是一致的,私钥的十六进制就直接放入对应的参数即可
传入不带04的十六进制的128位字符串,对应的格式就是x+y,代码中 keyStr.startsWith(“04”) ? keyStr.slice(2) : keyStr正是为了判断这个。
2、对于安卓加密的密文,HarmonyOS这边的格式是ASN.1包裹的格式,因此HarmonyOS这边解密的时候,需要先序列化:HexStrTouint8Array(new SM2_Ciphertext().i2d_SM2_Ciphertext(“安卓的密文”));同理HarmonyOS生成的密文要先解码:new SM2_Ciphertext().d2i_SM2_Ciphertext(uint8ArrayToHexStr(HarmonyOS密文)),其中安卓的密文为十六进制字符串,HarmonyOS密文为Uint8Array数组
具体实现如下:
效果图


核心代码
根据密钥参数生成sm2私钥
export async function convertStrToPriKey(keyStr: string): Promise<cryptoFramework.PriKey> {
  let sk = BigInt(“0x” + keyStr)
  let priKeySpec: cryptoFramework.ECCPriKeySpec = {
    params: cryptoFramework.ECCKeyUtil.genECCCommonParamsSpec(‘NID_sm2’),
    sk: sk,
    algName: “SM2”,
    specType: cryptoFramework.AsyKeySpecType.PRIVATE_KEY_SPEC
  }
  let keypairGenerator = cryptoFramework.createAsyKeyGeneratorBySpec(priKeySpec)
  return await keypairGenerator.generatePriKey()
}
 根据密钥参数生成sm2公钥
export async function convertStrToPubKey(keyStr: string): Promise<cryptoFramework.PubKey> {
  let pubKeyStr = keyStr.startsWith(“04”) ? keyStr.slice(2) : keyStr
  let pkPart1 = pubKeyStr.slice(0, pubKeyStr.length / 2)
  let pkPart2 = pubKeyStr.slice(pubKeyStr.length / 2)
  let pk: cryptoFramework.Point = {
    x: BigInt(“0x” + pkPart1),
    y: BigInt(“0x” + pkPart2),
  }
  let pubKeySpec: cryptoFramework.ECCPubKeySpec = {
    params: cryptoFramework.ECCKeyUtil.genECCCommonParamsSpec(‘NID_sm2’),
    pk: pk,
    algName: “SM2”,
    specType: cryptoFramework.AsyKeySpecType.PUBLIC_KEY_SPEC
  }
  let keypairGenerator = cryptoFramework.createAsyKeyGeneratorBySpec(pubKeySpec)
  return await keypairGenerator.generatePubKey()
}
加密消息
async function encryptMessagePromise(publicKey: cryptoFramework.PubKey, plainText: string) {
  let cipher = cryptoFramework.createCipher(‘SM2_256|SM3’)
  await cipher.init(cryptoFramework.CryptoMode.ENCRYPT_MODE, publicKey, null)
  let encryptData = await cipher.doFinal({ data:stringToUint8Array(plainText) })
  return encryptData
}
解密消息
async function decryptMessagePromise(privateKey: cryptoFramework.PriKey, cipherText: cryptoFramework.DataBlob) {
  let decoder = cryptoFramework.createCipher(‘SM2_256|SM3’)
  await decoder.init(cryptoFramework.CryptoMode.DECRYPT_MODE, privateKey, null)
  let decryptData = await decoder.doFinal(cipherText)
  return decryptData
}
使用过程中安卓和HarmonyOS的格式转换介绍
export async function test(data: string) {
  //十六进制的公私钥
  let pubKeyStr = “0453402B95F3584F36B9A7129A6B5C6109F2DBC7C94BE7858DB66C48AF38CB5C3B76883EE4BF18E270607191E233EAC0A95ECFB8EF6FE80C5F782DE24F018DEB5F”
  let priKeyStr = “5B9270E0ADF86A101167610FCCD375A6549DC14E9225951EF3A4640F26D6CD9C”
  //安卓加密后的密文
  let a = “53ce193ad865c6d97742da78b18a21d0ca66200fe080284d774d5500915be2425cea2f310c9a423bc2d08ce5c1e78a75cfd66d88688a0e2076a45614307e4372aa10b514841cfe7bff08fc82d96bdf35754696571e5fbedd552d1ab7c54bff796a0e3fd72902”;
  //根据密钥参数生成对应的公私钥
  let pk = await convertStrToPubKey(pubKeyStr)
  let sk = await convertStrToPriKey(priKeyStr)
  //加密
  let encryptText = await encryptMessagePromise(pk, data)
  //将加密的密文数据解码转换为安卓可用数据(用于HarmonyOS和安卓的交接)
  let b = new SM2_Ciphertext().d2i_SM2_Ciphertext(uint8ArrayToHexStr(encryptText.data))
  console.log(“解码后数据=======>” + b)
  //解密得到结果
  let res = await decryptMessagePromise(sk, encryptText)
  console.log(“a=======>” + uint8ArrayToString(res.data))
  //针对安卓的密文处理,转成HarmonyOS可用uint8Array数组数据
  let c = HexStrTouint8Array(new SM2_Ciphertext().i2d_SM2_Ciphertext(a))
  //对安卓生成的的密文进行解密
  let resa = await decryptMessagePromise(sk, { data:c })
}
 场景二:
缺少基础的加解密示例(AES|ECB|PKCS7 demo)
方案
对于不同的分组模式下表中给出了相应的参数适用说明,代码以AES128为例,这里的密钥传入的为base64格式,偏移量IV为字符串,对于格式的可以参考格式转换。对于GCM的参数设置,这里给了IV的,其余参数参考IV的写法即可。模板中使用的加解密算法以及密钥规格可以参考以下链接:
| 分组模式 | 适用的加解密方式 | 所需参数 | 备注 | 
| ECB | AES、SM4、3DES | 没有偏移量等参数 | 
 | 
| CBC、CTR、OFB、CFB | AES、SM4、3DES(不支持CTR) | 指明加解密参数iv。 - AES的iv长度为16字节 - 3DES的iv长度为8字节 - SM4iv长度为16字节。 | 
 | 
| GCM | AES | 指明加解密参数iv,长度为1~16字节,常用为12字节。 指明加解密参数aad,长度为0~INT_MAX字节,常用为16字节。 指明加解密参数authTag,长度为16字节。 | 在GCM模式下,需要从加密后的数据中取出末尾16字节,作为解密时初始化的认证信息 | 
效果图


核心代码
ECB加解密模板
//加密
async function aesEncrypt(text:string,puKey:string): Promise<string>{
  let globalResult = “”
  try {
    //这里已AES加解密为例支持AES、SM4、3DES
    let cipherAlgName = ‘AES128|ECB|PKCS7’;
    // 创建加解密对象
    let globalCipher = cryptoFramework.createCipher(cipherAlgName);
    //这里已AES加解密为例支持AES、SM4、3DES
    let symAlgName = ‘AES128’;
    //创建密钥对象
    let symKeyGenerator = cryptoFramework.createSymKeyGenerator(symAlgName);
    //将传入的base格式的密钥转为Uint8Array数组
    let dataUint8Array = base.decodeSync(puKey)
    let keyBlob: cryptoFramework.DataBlob = { data: dataUint8Array }
    //导入外部密钥
    let promiseSymKey = await symKeyGenerator.convertKey(keyBlob)
    //初始化
    await globalCipher.init(cryptoFramework.CryptoMode.ENCRYPT_MODE, promiseSymKey, null);
    //加密
    let result = await globalCipher.doFinal({data:stringToUint8Array(text)})
    //将加密结果转换为base64格式,用于保存或者传递
    globalResult = base.encodeToStringSync(result.data);
  } catch (err) {
    console.log(err.message)
  }
  return globalResult;
}
// 解密
async function aesDecrypt(text: string, key: string) {
  let globalResult = “”
  try {
    //这里已AES加解密为例支持AES、SM4、3DES
    let cipherAlgName = ‘AES128|ECB|PKCS7’;
    // 创建加解密对象
    let globalCipher = cryptoFramework.createCipher(cipherAlgName);
    //这里已AES加解密为例支持AES、SM4、3DES
    let symAlgName = ‘AES128’;
    //创建密钥对象
    let symKeyGenerator = cryptoFramework.createSymKeyGenerator(symAlgName);
    //将传入的base格式的密钥转为Uint8Array数组
    let dataUint8Array = base.decodeSync(key)
    let keyBlob: cryptoFramework.DataBlob = { data: dataUint8Array }
    //导入外部密钥
    let promiseSymKey = await symKeyGenerator.convertKey(keyBlob)
    await globalCipher.init(cryptoFramework.CryptoMode.DECRYPT_MODE, promiseSymKey, null);
    let plainText: cryptoFramework.DataBlob = { data: base.decodeSync(text) }
    let result = await globalCipher.doFinal(plainText)
    //将解密后的结果result解码之后得到明文
    globalResult = uint8ArrayToString(result.data);
    console.log(“解密后的明文==》” + globalResult)
  } catch (err) {
    console.log(err.message)
  }
}
<button style="position: absolute; padding: 4px 8px 0px; cursor: pointer; top: 8px; right: 8px; font-size: 14px;">复制</button>CBC加解密模板
//加密
async function aesEncrypt(text: string, key: string, iv:string): Promise<string> {
  let globalResult = “”
  try {
    //这里已AES加解密为例支持AES、SM4、3DES
    let cipherAlgName = ‘AES128|CBC|PKCS7’;
    let globalCipher = cryptoFramework.createCipher(cipherAlgName);
    //这里已AES加解密为例支持AES、SM4、3DES
    let symAlgName = ‘AES128’;
    let symKeyGenerator = cryptoFramework.createSymKeyGenerator(symAlgName);
    let dataUint8Array = base.decodeSync(key)
    let keyBlob: cryptoFramework.DataBlob = { data: dataUint8Array }
    let promiseSymKey = await symKeyGenerator.convertKey(keyBlob)
    let ivData = stringToUint8Array(iv);
    let ivdata: cryptoFramework.DataBlob = { data: ivData }; //偏移
    let iv: cryptoFramework.IvParamsSpec = { iv: ivdata, algName: ‘IvParamsSpec’ } //cbc 模式的参数
    await globalCipher.init(cryptoFramework.CryptoMode.ENCRYPT_MODE, promiseSymKey, iv);
    let plainText: cryptoFramework.DataBlob = { data: this.stringToUint8Array(text) }
    let result = await globalCipher.doFinal(plainText)
    globalResult = base.encodeToStringSync(result.data);
  } catch (err) {
    console.log(err.message)
  }
  return globalResult;
}
// 解密
async function aesDecrypt(text: string, key: string,iv:string) {
  let globalResult = “”
  try {
    let cipherAlgName = ‘AES128|CBC|PKCS7’;
    let globalCipher = cryptoFramework.createCipher(cipherAlgName);
    let symAlgName = ‘AES128’;
    let symKeyGenerator = cryptoFramework.createSymKeyGenerator(symAlgName);
    let dataUint8Array = base.decodeSync(key)
    let keyBlob: cryptoFramework.DataBlob = { data: dataUint8Array }
    let promiseSymKey = await symKeyGenerator.convertKey(keyBlob)
    // /*设置偏移量 */
    let ivData = stringToUint8Array(iv);
    let ivdata: cryptoFramework.DataBlob = { data: ivData }; //偏移
    let iv: cryptoFramework.IvParamsSpec = { iv: ivdata, algName: ‘IvParamsSpec’ } //cbc 模式的参数
    await globalCipher.init(cryptoFramework.CryptoMode.DECRYPT_MODE, promiseSymKey, globalCbcParams);
    let plainText: cryptoFramework.DataBlob = { data: base.decodeSync(text) }
    let result = await globalCipher.doFinal(plainText)
    globalResult = uint8ArrayToString(result.data);
    console.log(“解密后的明文==》” + globalResult)
  } catch (err) {
    console.log(err.message)
  }
  return globalResult;
}
 GCM加解密模板
//GCM的参数设置
function genGcmParamsSpec() {
  let arr = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; // 12 bytes
  let dataIv = new Uint8Array(arr);
  let ivBlob: cryptoFramework.DataBlob = { data: dataIv };
  arr = [0, 0, 0, 0, 0, 0, 0, 0]; // 8 bytes
  let dataAad = new Uint8Array(arr);
  let aadBlob: cryptoFramework.DataBlob = { data: dataAad };
  arr = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; // 16 bytes
  let dataTag = new Uint8Array(arr);
  let tagBlob: cryptoFramework.DataBlob = {
    data: dataTag
  };
  // GCM的authTag在加密时从doFinal结果中获取,在解密时填入init函数的params参数中
  let gcmParamsSpec: cryptoFramework.GcmParamsSpec = {
    iv: ivBlob,
    aad: aadBlob,
    authTag: tagBlob,
    algName: “GcmParamsSpec”
  };
  return gcmParamsSpec;
}
//加密
export async function aesEncryptGCM(text: string, key: string,iv:string): Promise<string> {
  let globalResult = “”
  try {
    let cipherAlgName = ‘AES128|GCM|PKCS5’;
    let globalCipher = cryptoFramework.createCipher(cipherAlgName);
    let symAlgName = ‘AES128’;
    let symKeyGenerator = cryptoFramework.createSymKeyGenerator(symAlgName);
    let dataUint8Array = stringToUint8Array(key)
    let keyBlob: cryptoFramework.DataBlob = { data: dataUint8Array }
    let promiseSymKey = await symKeyGenerator.convertKey(keyBlob)
    let getParamsSpec: cryptoFramework.GcmParamsSpec = genGcmParamsSpec();
    getParamsSpec.iv = { data: stringToUint8Array(iv) }
    await globalCipher.init(cryptoFramework.CryptoMode.ENCRYPT_MODE, promiseSymKey, getParamsSpec);
    let plainText: cryptoFramework.DataBlob = { data: stringToUint8Array(text) }
    let res = await globalCipher.doFinal(plainText)
    authTag = res.data.subarray(res.data.length - 16, res.data.length)//authTag
    let a = res.data.subarray(0, res.data.length - authTag.length);//密文
    globalResult = base.encodeToStringSync(a);
  } catch (err) {
    console.log(err.message)
  }
  return globalResult;
}
// 解密
export async function aesDecryptGCM(text: string, key: string) {
  let globalResult = “”
  try {
    let cipherAlgName = ‘AES128|GCM|PKCS5’;
    let globalCipher = cryptoFramework.createCipher(cipherAlgName);
    let symAlgName = ‘AES128’;
    let symKeyGenerator = cryptoFramework.createSymKeyGenerator(symAlgName);
    let dataUint8Array = stringToUint8Array(key)
    let keyBlob: cryptoFramework.DataBlob = { data: dataUint8Array }
    let promiseSymKey = await symKeyGenerator.convertKey(keyBlob)
    let getParamsSpec: cryptoFramework.GcmParamsSpec = genGcmParamsSpec();
    getParamsSpec.authTag = {data:authTag}
    getParamsSpec.iv = { data: stringToUint8Array(iv) }
    await globalCipher.init(cryptoFramework.CryptoMode.DECRYPT_MODE, promiseSymKey, getParamsSpec);
    let plainText: cryptoFramework.DataBlob = { data: base.decodeSync(text) }
    let result = await globalCipher.doFinal(plainText)
    globalResult = uint8ArrayToString(result.data);
    console.log(“解密后的明文==》” + globalResult)
  } catch (err) {
    console.log(err.message)
  }
  return globalResult;
}
 更多关于HarmonyOS 鸿蒙Next基于加解密算法框架的常见规格问题的实战教程也可以访问 https://www.itying.com/category-93-b0.html
更多关于HarmonyOS 鸿蒙Next基于加解密算法框架的常见规格问题的实战系列教程也可以访问 https://www.itying.com/category-93-b0.html
您好,当前技术文章配套的demo工程正在外发中,后续会发布至gitee上,敬请关注!
您好,当前技术文章配套的demo工程正在外发中,后续会发布至gitee上,敬请关注!
SM2_Ciphertext().d2i_SM2_Ciphertext();
SM2_Ciphertext().i2d_SM2_Ciphertext();
SM2_Ciphertext两个方法源码麻烦贴一下或者给一个项目地址,感谢博主!
您好,当前技术文章配套的demo工程正在外发中,后续会发布至gitee上,敬请关注!
HarmonyOS 鸿蒙Next基于加解密算法框架的常见规格问题主要涉及不同加密算法在不同平台间的兼容性和格式转换。
对于SM2加解密,安卓和HarmonyOS的密文和密钥格式存在差异。安卓生成的密钥在HarmonyOS使用时,需要进行格式转换,特别是公钥需要判断是否以“04”开头,并据此调整格式。同时,安卓加密的密文在HarmonyOS解密时,需先将其从十六进制字符串序列化为ASN.1格式,反之亦然。
对于RSA加解密,需注意填充模式的选择,如NoPadding、PKCS1和PKCS1_OAEP,它们对输入数据的长度和加密后的数据长度有不同要求。开发者需根据实际需求选择合适的填充模式,并确保输入数据符合长度要求。
此外,HarmonyOS 鸿蒙Next在加解密算法框架上可能还有其他规格问题,具体需参考官方文档和API说明。
如果问题依旧没法解决请联系官网客服,官网地址是:https://www.itying.com/category-93-b0.html
 
        
       
                   
                   
                  

