Flutter相机校准插件flutter_camera_calibration的使用
Flutter相机校准插件flutter_camera_calibration的使用
1. 简介
flutter_camera_calibration
插件项目提供了iOS和Android平台上的相机校准功能,使用了OpenCV 4.3.0库。该插件允许你获取相机的内部参数。
- 这个功能通过将OpenCV教程中提供的C++相机校准代码适配到Flutter中实现。
- 该项目使用FFI(外部函数接口)库来绑定这些C++函数以在Flutter中使用。
- 在示例代码中,你可以看到
file_picker
和image_picker
的使用。 - 你可以从以下链接下载配置文件和测试图像:
- 请注意,在模拟器上不支持运行示例进行测试,你应该在实际设备上进行测试。
2. 截图
Home | Config File Select | Captured Images Select | Camera Intrinsic Parameter Matrix |
---|---|---|---|
![]() |
![]() |
![]() |
![]() |
3. 设置
file_picker
和image_picker
所需的权限设置可以在各自的插件安装文档中找到。
4. 使用
import 'package:flutter_camera_calibration/flutter_camera_calibration.dart' as flutter_camera_calibration;
// 获取OpenCV版本
var version = flutter_camera_calibration.opencvVersion();
// 获取相机内部参数开始
String? filePath = "";
String full_path = ""; // 配置文件路径
// 选择配置文件 'in_VID5.xml'
FilePickerResult? result = await FilePicker.platform.pickFiles();
if (result != null) {
filePath = result.files.single.path;
full_path = filePath.toString();
if (filePath != null) {
// print("------------->" + filePath);
}
} else {
// 用户取消了选择
}
// 选择捕获的图像
final List<XFile>? images = await _picker.pickMultiImage();
final List<String> imagePaths = [];
if (images != null) {
for (final image in images) {
final imagePath = image?.path ?? "none";
// print("-----------" + imagePath.toString());
imagePaths.add(imagePath);
}
}
// 获取相机内部参数开始
final calibration_result = await flutter_camera_calibration.cameraCalibrate(full_path, imagePaths);
var matrix = flutter_camera_calibration.CameraIntrincMatrix(
calibration_result.rows,
calibration_result.cols,
calibration_result.array,
);
print(matrix);
// 获取相机内部参数结束
示例代码
import 'package:file_picker/file_picker.dart';
import 'package:flutter/material.dart';
import 'package:flutter_camera_calibration/flutter_camera_calibration.dart' as flutter_camera_calibration;
import 'package:image_picker/image_picker.dart';
void main() {
runApp(MaterialApp(
home: const MyApp(),
));
}
class MyApp extends StatefulWidget {
const MyApp({super.key});
[@override](/user/override)
State<MyApp> createState() => _MyAppState();
}
class _MyAppState extends State<MyApp> {
late String version;
final ImagePicker _picker = ImagePicker();
[@override](/user/override)
void initState() {
super.initState();
version = flutter_camera_calibration.opencvVersion();
}
[@override](/user/override)
Widget build(BuildContext context) {
const textStyle = TextStyle(fontSize: 25);
const spacerSmall = SizedBox(height: 10);
return Scaffold(
appBar: AppBar(
title: const Text('flutter_camera_calibration 示例'),
),
body: SingleChildScrollView(
child: Container(
padding: const EdgeInsets.all(10),
child: Column(
children: [
spacerSmall,
Text(
'OpenCV 版本: $version',
style: textStyle,
textAlign: TextAlign.center,
),
SizedBox(height: 300,),
Center(
child: ElevatedButton(
onPressed: () async {
String? filePath = "";
String full_path = "";
FilePickerResult? result = await FilePicker.platform.pickFiles();
if (result != null) {
filePath = result.files.single.path;
full_path = filePath.toString();
if (filePath != null) {
print("----------------->filePath: " + filePath);
print("----------------->full path: " + full_path);
}
} else {
// 用户取消了选择
}
final List<XFile>? images = await _picker.pickMultiImage();
final List<String> imagePaths = [];
if (images != null) {
for (final image in images) {
final imagePath = image?.path ?? "none";
print("-----------" + imagePath.toString());
imagePaths.add(imagePath);
}
}
final calibration_result = await flutter_camera_calibration.cameraCalibrate(full_path, imagePaths);
// 使用结果
print('------------------------------------------------------------------------->');
print('---------------------------------------->rows: ' + calibration_result.rows.toString());
print('---------------------------------------->cols: ' + calibration_result.cols.toString());
print('---------------------------------------->length: ' + calibration_result.length.toString());
var matrix = flutter_camera_calibration.CameraIntrincMatrix(
calibration_result.rows,
calibration_result.cols,
calibration_result.array,
);
print(matrix);
showDialog(
context: context,
builder: (BuildContext context) {
return AlertDialog(
title: Text("相机校准结果 \n\n相机内部参数矩阵",
style: TextStyle(fontSize: 15, fontWeight: FontWeight.bold),
),
content: Container(
width: 400,
height: 300,
child: MatrixWidget(matrix),
),
actions: <Widget>[
TextButton(
onPressed: () {
Navigator.of(context).pop();
},
child: Text("关闭"),
),
],
);
},
);
},
child: Text("运行相机校准"),
)
),
],
),
),
),
);
}
}
class MatrixWidget extends StatelessWidget {
final flutter_camera_calibration.CameraIntrincMatrix matrix;
MatrixWidget(this.matrix);
[@override](/user/override)
Widget build(BuildContext context) {
return GridView.builder(
gridDelegate: SliverGridDelegateWithFixedCrossAxisCount(
crossAxisCount: matrix.cols,
),
itemBuilder: (context, index) {
final row = index ~/ matrix.cols;
final col = index % matrix.cols;
final value = matrix.get(row, col);
return Center(
child: Text(
value.toStringAsFixed(2),
style: TextStyle(fontSize: 18.0),
),
);
},
itemCount: matrix.rows * matrix.cols,
);
}
}
更多关于Flutter相机校准插件flutter_camera_calibration的使用的实战教程也可以访问 https://www.itying.com/category-92-b0.html
更多关于Flutter相机校准插件flutter_camera_calibration的使用的实战系列教程也可以访问 https://www.itying.com/category-92-b0.html
flutter_camera_calibration
是一个用于相机校准的 Flutter 插件。相机校准是计算机视觉中的一个重要步骤,用于估计相机的内在参数(如焦距、主点、畸变系数等),以便进行更精确的图像处理或三维重建。
以下是如何使用 flutter_camera_calibration
插件的基本步骤:
1. 添加依赖
首先,在你的 pubspec.yaml
文件中添加 flutter_camera_calibration
插件的依赖:
dependencies:
flutter:
sdk: flutter
flutter_camera_calibration: ^latest_version
然后运行 flutter pub get
来获取依赖。
2. 导入插件
在你的 Dart 文件中导入插件:
import 'package:flutter_camera_calibration/flutter_camera_calibration.dart';
3. 初始化相机校准
接下来,你需要初始化相机校准。通常,你会使用一个棋盘格图像来进行校准。你可以使用 CameraCalibration
类来执行校准。
void main() async {
WidgetsFlutterBinding.ensureInitialized();
// 初始化相机校准
final cameraCalibration = CameraCalibration();
// 设置棋盘格的尺寸(例如:9x6)
final patternSize = Size(9, 6);
// 加载棋盘格图像
final imageFile = File('path_to_your_checkerboard_image.jpg');
final imageBytes = await imageFile.readAsBytes();
// 进行相机校准
final calibrationResult = await cameraCalibration.calibrate(
imageBytes,
patternSize,
);
// 打印校准结果
print('Camera Matrix: ${calibrationResult.cameraMatrix}');
print('Distortion Coefficients: ${calibrationResult.distortionCoefficients}');
}
4. 使用校准结果
校准完成后,你将获得相机的内参矩阵和畸变系数。这些参数可以用于后续的图像处理任务,例如去畸变、三维重建等。
// 使用校准结果进行图像去畸变
final undistortedImageBytes = await cameraCalibration.undistort(
imageBytes,
calibrationResult.cameraMatrix,
calibrationResult.distortionCoefficients,
);
// 保存去畸变后的图像
final undistortedImageFile = File('path_to_save_undistorted_image.jpg');
await undistortedImageFile.writeAsBytes(undistortedImageBytes);
5. 处理错误
在实际应用中,你可能会遇到各种错误,例如图像中没有检测到棋盘格。你可以使用 try-catch
块来捕获并处理这些错误。
try {
final calibrationResult = await cameraCalibration.calibrate(
imageBytes,
patternSize,
);
print('Camera Matrix: ${calibrationResult.cameraMatrix}');
} catch (e) {
print('Calibration failed: $e');
}