Flutter文本处理插件flutter_tf_idf的使用

Flutter文本处理插件flutter_tf_idf的使用

flutter_tf_idf 是一个用于在 Flutter 应用程序中计算 TF-IDF(词频-逆文档频率)并执行文本分析任务的 Dart 包。

功能

  • 计算文档集合的 TF-IDF 矩阵。
  • 计算文档之间的余弦相似度和距离。
  • 获取特定文档的顶级词汇。
  • 基于查询搜索文档。
  • 获取特定词汇和文档的 TF-IDF 分数。
  • 查找给定词汇的最高得分文档。

开始使用

1. 添加依赖

pubspec.yaml 文件中添加 flutter_tf_idf 依赖:

dependencies:
  flutter_tf_idf: ^1.0.0

2. 运行 flutter pub get

打开终端并运行以下命令以获取依赖项:

flutter pub get

3. 导入包

在需要使用该包的文件中导入:

import 'package:flutter_tf_idf/flutter_tf_idf.dart';

使用示例

下面是一个完整的示例,展示了如何使用 flutter_tf_idf 包来创建一个简单的 Flutter 应用程序。

示例代码

import 'package:flutter/material.dart';
import 'package:flutter_tf_idf/flutter_tf_idf.dart';

void main() {
  runApp(TfIdfDemoApp());
}

class TfIdfDemoApp extends StatelessWidget {
  [@override](/user/override)
  Widget build(BuildContext context) {
    return MaterialApp(
      title: 'TF-IDF Demo',
      theme: ThemeData(
        primarySwatch: Colors.blue,
      ),
      home: TfIdfDemo(),
    );
  }
}

class TfIdfDemo extends StatelessWidget {
  final TfIdf tfIdf;

  TfIdfDemo()
      : tfIdf = TfIdf([
          Document('1', 'The art of baking delicious cakes'),
          Document('2', 'Painting techniques for beginners'),
          Document('3', 'Culinary arts: baking and beyond'),
        ]);

  [@override](/user/override)
  Widget build(BuildContext context) {
    return Scaffold(
      appBar: AppBar(
        title: Text('TF-IDF Demo'),
      ),
      body: Padding(
        padding: const EdgeInsets.all(16.0),
        child: SingleChildScrollView(
          child: Column(
            crossAxisAlignment: CrossAxisAlignment.start,
            children: [
              Text(
                'Documents:',
                style: TextStyle(fontWeight: FontWeight.bold, fontSize: 18),
              ),
              ...tfIdf.documents
                  .map((doc) => Text('Document ${doc.id}: ${doc.content}')),
              SizedBox(height: 20),
              Text(
                'Top terms in document 1:',
                style: TextStyle(fontWeight: FontWeight.bold, fontSize: 16),
              ),
              Text(tfIdf.getTopTerms('1', 3).join(', ')),
              SizedBox(height: 20),
              Text(
                'Search results for "art":',
                style: TextStyle(fontWeight: FontWeight.bold, fontSize: 16),
              ),
              Text(tfIdf.searchDocuments('art', 2).join(', ')),
              SizedBox(height: 20),
              Text(
                'Cosine similarity between document 1 and document 2:',
                style: TextStyle(fontWeight: FontWeight.bold, fontSize: 16),
              ),
              Text(
                  tfIdf.calculateCosineSimilarity('1', '2').toStringAsFixed(3)),
              SizedBox(height: 20),
              Text(
                'Cosine distance between document 1 and document 2:',
                style: TextStyle(fontWeight: FontWeight.bold, fontSize: 16),
              ),
              Text(tfIdf.calculateCosineDistance('1', '2').toStringAsFixed(3)),
              SizedBox(height: 20),
              Text(
                'TF-IDF score of "art" in document 1:',
                style: TextStyle(fontWeight: FontWeight.bold, fontSize: 16),
              ),
              Text(tfIdf.getTfIdfScore('art', '1').toStringAsFixed(3)),
              SizedBox(height: 20),
              Text(
                'Highest scoring document for the term "art":',
                style: TextStyle(fontWeight: FontWeight.bold, fontSize: 16),
              ),
              Text(tfIdf.getHighestScoringDocument('art')),
              SizedBox(height: 20),
              Text(
                'TF-IDF Matrix:',
                style: TextStyle(fontWeight: FontWeight.bold, fontSize: 18),
              ),
              for (var term in tfIdf.terms)
                Text(
                    '$term: ${tfIdf.documents.map((doc) => tfIdf.getTfIdfScore(term, doc.id).toStringAsFixed(3)).join(', ')}'),
            ],
          ),
        ),
      ),
    );
  }
}

更多关于Flutter文本处理插件flutter_tf_idf的使用的实战教程也可以访问 https://www.itying.com/category-92-b0.html

1 回复

更多关于Flutter文本处理插件flutter_tf_idf的使用的实战系列教程也可以访问 https://www.itying.com/category-92-b0.html


flutter_tf_idf 是一个用于 Flutter 的插件,用于计算文本的 TF-IDF(Term Frequency-Inverse Document Frequency)值。TF-IDF 是一种常用的文本分析技术,用于衡量一个词在文档中的重要性。

安装插件

首先,你需要在 pubspec.yaml 文件中添加 flutter_tf_idf 插件的依赖:

dependencies:
  flutter:
    sdk: flutter
  flutter_tf_idf: ^1.0.0  # 请根据实际版本号进行替换

然后运行 flutter pub get 来安装插件。

使用插件

以下是一个简单的示例,展示如何使用 flutter_tf_idf 插件计算 TF-IDF 值。

import 'package:flutter/material.dart';
import 'package:flutter_tf_idf/flutter_tf_idf.dart';

void main() {
  runApp(MyApp());
}

class MyApp extends StatelessWidget {
  [@override](/user/override)
  Widget build(BuildContext context) {
    return MaterialApp(
      home: TFIDFExample(),
    );
  }
}

class TFIDFExample extends StatefulWidget {
  [@override](/user/override)
  _TFIDFExampleState createState() => _TFIDFExampleState();
}

class _TFIDFExampleState extends State<TFIDFExample> {
  List<String> documents = [
    "The quick brown fox jumps over the lazy dog",
    "Never jump over the lazy dog quickly",
    "Brown foxes are quick and lazy dogs are not",
  ];

  Map<String, double> tfidfScores = {};

  [@override](/user/override)
  void initState() {
    super.initState();
    calculateTFIDF();
  }

  void calculateTFIDF() {
    TFIDF tfidf = TFIDF();
    tfidfScores = tfidf.calculateTFIDF(documents);
    setState(() {});
  }

  [@override](/user/override)
  Widget build(BuildContext context) {
    return Scaffold(
      appBar: AppBar(
        title: Text('TF-IDF Example'),
      ),
      body: ListView(
        children: tfidfScores.entries.map((entry) {
          return ListTile(
            title: Text(entry.key),
            subtitle: Text('TF-IDF Score: ${entry.value.toStringAsFixed(4)}'),
          );
        }).toList(),
      ),
    );
  }
}
回到顶部