Flutter图像分类插件apple_vision_image_classification的使用
Flutter图像分类插件apple_vision_image_classification的使用
apple_vision_image_classification
Apple Vision 自拍照检测是一个使 Flutter 应用能够使用 Apple Vision 图像分类 的插件。
- 该插件不是由 Apple 赞助或维护。作者是希望为 macOS 创建类似 Google ML Kit 插件的开发者。
需求
MacOS
- 最低 osx 部署目标:10.13
- Xcode 13 或更新版本
- Swift 5
- ML Kit 仅支持 64 位架构(x86_64 和 arm64)
iOS
- 最低 ios 部署目标:14.0
- Xcode 13 或更新版本
- Swift 5
- ML Kit 仅支持 64 位架构(x86_64 和 arm64)
开始使用
首先导入 'package:apple_vision/apple_vision.dart'
:
final GlobalKey cameraKey = GlobalKey(debugLabel: "cameraKey");
AppleVisionImageClassificationController visionController = AppleVisionImageClassificationController();
InsertCamera camera = InsertCamera();
Size imageSize = const Size(640, 640 * 9 / 16);
String? deviceId;
bool loading = true;
List<Label>? labels;
late double deviceWidth;
late double deviceHeight;
[@override](/user/override)
void initState() {
camera.setupCameras().then((value) {
setState(() {
loading = false;
});
camera.startLiveFeed((InputImage i) {
if (i.metadata?.size != null) {
imageSize = i.metadata!.size;
}
if (mounted) {
Uint8List? image = i.bytes;
visionController.processImage(image!, imageSize).then((data) {
labels = data;
setState(() {});
});
}
});
});
super.initState();
}
[@override](/user/override)
void dispose() {
camera.dispose();
super.dispose();
}
[@override](/user/override)
Widget build(BuildContext context) {
deviceWidth = MediaQuery.of(context).size.width;
deviceHeight = MediaQuery.of(context).size.height;
return Stack(
children: <Widget>[
SizedBox(
width: imageSize.width,
height: imageSize.height,
child: loading ? Container() : CameraSetup(camera: camera, size: imageSize)
),
Column(children: showLabel(),)
]
);
}
List<Widget> showLabel() {
if (labels == null || labels!.isEmpty) return [];
List<Widget> widgets = [];
for (int i = 0; i < labels!.length; i++) {
widgets.add(
Container(
width: 320,
height: 20,
decoration: BoxDecoration(
color: Colors.green,
borderRadius: BorderRadius.circular(5)
),
child: Text(
'${labels![i].label}: ${labels![i].confidence}',
style: const TextStyle(
color: Colors.white,
fontSize: 12
),
),
)
);
}
return widgets;
}
Widget loadingWidget() {
return Container(
width: deviceWidth,
height: deviceHeight,
color: Theme.of(context).canvasColor,
alignment: Alignment.center,
child: const CircularProgressIndicator(color: Colors.blue)
);
}
示例
以下是该插件的一个完整示例:
import 'package:apple_vision_image_classification/apple_vision_image_classification.dart';
import 'package:flutter/material.dart';
import '../camera/camera_insert.dart';
import 'package:flutter/foundation.dart';
import 'package:flutter/services.dart';
import 'camera/input_image.dart';
void main() {
runApp(const MyApp());
}
class MyApp extends StatelessWidget {
const MyApp({super.key});
[@override](/user/override)
Widget build(BuildContext context) {
return MaterialApp(
title: 'Flutter Demo',
theme: ThemeData(
primarySwatch: Colors.blue,
),
home: const VisionIC(),
);
}
}
class VisionIC extends StatefulWidget {
const VisionIC({
Key? key,
this.onScanned
}) : super(key: key);
final Function(dynamic data)? onScanned;
[@override](/user/override)
_VisionIC createState() => _VisionIC();
}
class _VisionIC extends State<VisionIC> {
final GlobalKey cameraKey = GlobalKey(debugLabel: "cameraKey");
AppleVisionImageClassificationController visionController = AppleVisionImageClassificationController();
InsertCamera camera = InsertCamera();
Size imageSize = const Size(640, 640 * 9 / 16);
String? deviceId;
bool loading = true;
List<Label>? labels;
late double deviceWidth;
late double deviceHeight;
[@override](/user/override)
void initState() {
camera.setupCameras().then((value) {
setState(() {
loading = false;
});
camera.startLiveFeed((InputImage i) {
if (i.metadata?.size != null) {
imageSize = i.metadata!.size;
}
if (mounted) {
Uint8List? image = i.bytes;
visionController.processImage(image!, imageSize).then((data) {
labels = data;
setState(() {});
});
}
});
});
super.initState();
}
[@override](/user/override)
void dispose() {
camera.dispose();
super.dispose();
}
[@override](/user/override)
Widget build(BuildContext context) {
deviceWidth = MediaQuery.of(context).size.width;
deviceHeight = MediaQuery.of(context).size.height;
return Stack(
children: <Widget>[
SizedBox(
width: imageSize.width,
height: imageSize.height,
child: loading ? Container() : CameraSetup(camera: camera, size: imageSize)
),
Column(children: showLabel(),)
]
);
}
List<Widget> showLabel() {
if (labels == null || labels!.isEmpty) return [];
List<Widget> widgets = [];
for (int i = 0; i < labels!.length; i++) {
widgets.add(
Container(
width: 320,
height: 20,
decoration: BoxDecoration(
color: Colors.green,
borderRadius: BorderRadius.circular(5)
),
child: Text(
'${labels![i].label}: ${labels![i].confidence}',
style: const TextStyle(
color: Colors.white,
fontSize: 12
),
),
)
);
}
return widgets;
}
Widget loadingWidget() {
return Container(
width: deviceWidth,
height: deviceHeight,
color: Theme.of(context).canvasColor,
alignment: Alignment.center,
child: const CircularProgressIndicator(color: Colors.blue)
);
}
}
更多关于Flutter图像分类插件apple_vision_image_classification的使用的实战教程也可以访问 https://www.itying.com/category-92-b0.html
更多关于Flutter图像分类插件apple_vision_image_classification的使用的实战系列教程也可以访问 https://www.itying.com/category-92-b0.html
apple_vision_image_classification
是一个 Flutter 插件,用于在 iOS 设备上使用 Apple 的 Vision 框架进行图像分类。这个插件允许你在 Flutter 应用中轻松地集成图像分类功能。以下是如何使用这个插件的基本步骤:
1. 添加依赖
首先,你需要在 pubspec.yaml
文件中添加 apple_vision_image_classification
插件的依赖:
dependencies:
flutter:
sdk: flutter
apple_vision_image_classification: ^1.0.0 # 请检查最新版本
然后运行 flutter pub get
来安装依赖。
2. 导入插件
在你的 Dart 文件中导入插件:
import 'package:apple_vision_image_classification/apple_vision_image_classification.dart';
3. 初始化插件
在使用插件之前,你需要初始化它。通常你可以在 initState
方法中进行初始化:
class _MyHomePageState extends State<MyHomePage> {
AppleVisionImageClassification? _imageClassification;
[@override](/user/override)
void initState() {
super.initState();
_imageClassification = AppleVisionImageClassification();
}
[@override](/user/override)
void dispose() {
_imageClassification?.dispose();
super.dispose();
}
}
4. 加载图像并进行分类
你可以使用 classifyImage
方法来对图像进行分类。以下是一个简单的示例:
Future<void> classifyImage(String imagePath) async {
try {
final classificationResult = await _imageClassification!.classifyImage(imagePath);
print('Classification Result: $classificationResult');
} catch (e) {
print('Error: $e');
}
}
5. 处理分类结果
classifyImage
方法返回一个包含分类结果的列表。每个结果通常包含一个标签和置信度分数。你可以根据需要处理这些结果:
classificationResult.forEach((result) {
print('Label: ${result.label}, Confidence: ${result.confidence}');
});
6. 完整示例
以下是一个完整的示例,展示了如何在 Flutter 应用中使用 apple_vision_image_classification
插件:
import 'package:flutter/material.dart';
import 'package:apple_vision_image_classification/apple_vision_image_classification.dart';
void main() {
runApp(MyApp());
}
class MyApp extends StatelessWidget {
[@override](/user/override)
Widget build(BuildContext context) {
return MaterialApp(
title: 'Image Classification',
theme: ThemeData(
primarySwatch: Colors.blue,
),
home: MyHomePage(),
);
}
}
class MyHomePage extends StatefulWidget {
[@override](/user/override)
_MyHomePageState createState() => _MyHomePageState();
}
class _MyHomePageState extends State<MyHomePage> {
AppleVisionImageClassification? _imageClassification;
[@override](/user/override)
void initState() {
super.initState();
_imageClassification = AppleVisionImageClassification();
}
[@override](/user/override)
void dispose() {
_imageClassification?.dispose();
super.dispose();
}
Future<void> classifyImage(String imagePath) async {
try {
final classificationResult = await _imageClassification!.classifyImage(imagePath);
print('Classification Result: $classificationResult');
classificationResult.forEach((result) {
print('Label: ${result.label}, Confidence: ${result.confidence}');
});
} catch (e) {
print('Error: $e');
}
}
[@override](/user/override)
Widget build(BuildContext context) {
return Scaffold(
appBar: AppBar(
title: Text('Image Classification'),
),
body: Center(
child: Column(
mainAxisAlignment: MainAxisAlignment.center,
children: <Widget>[
ElevatedButton(
onPressed: () async {
// 替换为你的图像路径
await classifyImage('assets/sample_image.jpg');
},
child: Text('Classify Image'),
),
],
),
),
);
}
}