Flutter机器学习相机插件camera_ml的使用

Flutter机器学习相机插件camera_ml的使用

示例代码

import 'package:camera_ml/detector_widget.dart';
import 'package:flutter/material.dart';
import 'dart:async';

// import 'package:flutter/services.dart';
// import 'package:camera_ml/camera_ml.dart';

void main() {
  runApp(const MyApp());
}

class MyApp extends StatefulWidget {
  const MyApp({super.key});

  [@override](/user/override)
  State<MyApp> createState() => _MyAppState();
}

class _MyAppState extends State<MyApp> {
  // String _platformVersion = 'Unknown';
  // final _cameraMlPlugin = CameraMl();

  [@override](/user/override)
  void initState() {
    super.initState();
    initPlatformState();
  }

  // Platform messages are asynchronous, so we initialize in an async method.
  Future<void> initPlatformState() async {
    // String platformVersion;
    // // Platform messages may fail, so we use a try/catch PlatformException.
    // // We also handle the message potentially returning null.
    // try {
    //   platformVersion = await _cameraMlPlugin.getPlatformVersion() ?? 'Unknown platform version';
    // } on PlatformException {
    //   platformVersion = 'Failed to get platform version.';
    // }

    // If the widget was removed from the tree while the asynchronous platform
    // message was in flight, we want to discard the reply rather than calling
    // setState to update our non-existent appearance.
    if (!mounted) return;

    // setState(() {
    //   _platformVersion = platformVersion;
    // });
  }

  [@override](/user/override)
  Widget build(BuildContext context) {
    return MaterialApp(
      home: Scaffold(
        key: GlobalKey(),
        appBar: AppBar(
          title: const Text('Plugin example app'),
        ),
        body: SafeArea(
            child: DetectorWidget(
          pathModel: 'assets/models/detect.tflite',
          pathMaptext: 'assets/models/labelmap.txt',
        )),
      ),
    );
  }
}

更多关于Flutter机器学习相机插件camera_ml的使用的实战教程也可以访问 https://www.itying.com/category-92-b0.html

1 回复

更多关于Flutter机器学习相机插件camera_ml的使用的实战系列教程也可以访问 https://www.itying.com/category-92-b0.html


camera_ml 是一个 Flutter 插件,它结合了相机功能和机器学习能力,允许开发者在 Flutter 应用程序中轻松实现基于相机的机器学习功能。这个插件通常用于实时图像处理、对象检测、人脸识别等场景。

以下是使用 camera_ml 插件的基本步骤:

1. 添加依赖

首先,你需要在 pubspec.yaml 文件中添加 camera_ml 插件的依赖:

dependencies:
  flutter:
    sdk: flutter
  camera_ml: ^latest_version

然后运行 flutter pub get 来安装依赖。

2. 配置相机权限

在 Android 和 iOS 上,你需要配置相机权限。

Android

android/app/src/main/AndroidManifest.xml 文件中添加以下权限:

<uses-permission android:name="android.permission.CAMERA" />
<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" />

iOS

ios/Runner/Info.plist 文件中添加以下权限:

<key>NSCameraUsageDescription</key>
<string>We need access to your camera to take photos.</string>
<key>NSMicrophoneUsageDescription</key>
<string>We need access to your microphone to record videos.</string>

3. 初始化相机

在你的 Dart 代码中,初始化相机并显示预览:

import 'package:camera_ml/camera_ml.dart';
import 'package:flutter/material.dart';

class CameraMLExample extends StatefulWidget {
  [@override](/user/override)
  _CameraMLExampleState createState() => _CameraMLExampleState();
}

class _CameraMLExampleState extends State<CameraMLExample> {
  CameraMLController? _cameraController;

  [@override](/user/override)
  void initState() {
    super.initState();
    _initializeCamera();
  }

  Future<void> _initializeCamera() async {
    _cameraController = await CameraMLController.initialize();
    if (!mounted) return;
    setState(() {});
  }

  [@override](/user/override)
  void dispose() {
    _cameraController?.dispose();
    super.dispose();
  }

  [@override](/user/override)
  Widget build(BuildContext context) {
    if (_cameraController == null) {
      return Center(child: CircularProgressIndicator());
    }
    return Scaffold(
      body: CameraMLPreview(controller: _cameraController!),
    );
  }
}

4. 实现机器学习功能

camera_ml 插件通常与 TensorFlow Lite 或其他机器学习框架集成,以执行实时图像分析。你可以使用 CameraMLController 来处理每一帧图像并进行机器学习推理。

以下是一个简单的示例,展示如何使用 camera_ml 进行实时对象检测:

import 'package:camera_ml/camera_ml.dart';
import 'package:flutter/material.dart';

class ObjectDetectionExample extends StatefulWidget {
  [@override](/user/override)
  _ObjectDetectionExampleState createState() => _ObjectDetectionExampleState();
}

class _ObjectDetectionExampleState extends State<ObjectDetectionExample> {
  CameraMLController? _cameraController;
  List<DetectedObject>? _detectedObjects;

  [@override](/user/override)
  void initState() {
    super.initState();
    _initializeCamera();
  }

  Future<void> _initializeCamera() async {
    _cameraController = await CameraMLController.initialize();
    _cameraController?.startImageStream((image) {
      // 在这里执行对象检测
      // 例如:_detectObjects(image);
    });
    if (!mounted) return;
    setState(() {});
  }

  Future<void> _detectObjects(CameraMLImage image) async {
    // 使用 TensorFlow Lite 或其他机器学习框架进行对象检测
    // 例如:_detectedObjects = await tflite.runModelOnFrame(image);
    setState(() {});
  }

  [@override](/user/override)
  void dispose() {
    _cameraController?.dispose();
    super.dispose();
  }

  [@override](/user/override)
  Widget build(BuildContext context) {
    if (_cameraController == null) {
      return Center(child: CircularProgressIndicator());
    }
    return Scaffold(
      body: Stack(
        children: [
          CameraMLPreview(controller: _cameraController!),
          if (_detectedObjects != null)
            _buildDetectionOverlay(_detectedObjects!),
        ],
      ),
    );
  }

  Widget _buildDetectionOverlay(List<DetectedObject> detectedObjects) {
    return CustomPaint(
      painter: ObjectDetectionPainter(detectedObjects),
    );
  }
}

class ObjectDetectionPainter extends CustomPainter {
  final List<DetectedObject> detectedObjects;

  ObjectDetectionPainter(this.detectedObjects);

  [@override](/user/override)
  void paint(Canvas canvas, Size size) {
    final paint = Paint()
      ..color = Colors.red
      ..style = PaintingStyle.stroke
      ..strokeWidth = 2.0;

    for (var object in detectedObjects) {
      canvas.drawRect(object.boundingBox, paint);
    }
  }

  [@override](/user/override)
  bool shouldRepaint(ObjectDetectionPainter oldDelegate) {
    return true;
  }
}
回到顶部