Flutter机器学习相机插件camera_ml的使用
Flutter机器学习相机插件camera_ml的使用
示例代码
import 'package:camera_ml/detector_widget.dart';
import 'package:flutter/material.dart';
import 'dart:async';
// import 'package:flutter/services.dart';
// import 'package:camera_ml/camera_ml.dart';
void main() {
runApp(const MyApp());
}
class MyApp extends StatefulWidget {
const MyApp({super.key});
[@override](/user/override)
State<MyApp> createState() => _MyAppState();
}
class _MyAppState extends State<MyApp> {
// String _platformVersion = 'Unknown';
// final _cameraMlPlugin = CameraMl();
[@override](/user/override)
void initState() {
super.initState();
initPlatformState();
}
// Platform messages are asynchronous, so we initialize in an async method.
Future<void> initPlatformState() async {
// String platformVersion;
// // Platform messages may fail, so we use a try/catch PlatformException.
// // We also handle the message potentially returning null.
// try {
// platformVersion = await _cameraMlPlugin.getPlatformVersion() ?? 'Unknown platform version';
// } on PlatformException {
// platformVersion = 'Failed to get platform version.';
// }
// If the widget was removed from the tree while the asynchronous platform
// message was in flight, we want to discard the reply rather than calling
// setState to update our non-existent appearance.
if (!mounted) return;
// setState(() {
// _platformVersion = platformVersion;
// });
}
[@override](/user/override)
Widget build(BuildContext context) {
return MaterialApp(
home: Scaffold(
key: GlobalKey(),
appBar: AppBar(
title: const Text('Plugin example app'),
),
body: SafeArea(
child: DetectorWidget(
pathModel: 'assets/models/detect.tflite',
pathMaptext: 'assets/models/labelmap.txt',
)),
),
);
}
}
更多关于Flutter机器学习相机插件camera_ml的使用的实战教程也可以访问 https://www.itying.com/category-92-b0.html
1 回复
更多关于Flutter机器学习相机插件camera_ml的使用的实战系列教程也可以访问 https://www.itying.com/category-92-b0.html
camera_ml
是一个 Flutter 插件,它结合了相机功能和机器学习能力,允许开发者在 Flutter 应用程序中轻松实现基于相机的机器学习功能。这个插件通常用于实时图像处理、对象检测、人脸识别等场景。
以下是使用 camera_ml
插件的基本步骤:
1. 添加依赖
首先,你需要在 pubspec.yaml
文件中添加 camera_ml
插件的依赖:
dependencies:
flutter:
sdk: flutter
camera_ml: ^latest_version
然后运行 flutter pub get
来安装依赖。
2. 配置相机权限
在 Android 和 iOS 上,你需要配置相机权限。
Android
在 android/app/src/main/AndroidManifest.xml
文件中添加以下权限:
<uses-permission android:name="android.permission.CAMERA" />
<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" />
iOS
在 ios/Runner/Info.plist
文件中添加以下权限:
<key>NSCameraUsageDescription</key>
<string>We need access to your camera to take photos.</string>
<key>NSMicrophoneUsageDescription</key>
<string>We need access to your microphone to record videos.</string>
3. 初始化相机
在你的 Dart 代码中,初始化相机并显示预览:
import 'package:camera_ml/camera_ml.dart';
import 'package:flutter/material.dart';
class CameraMLExample extends StatefulWidget {
[@override](/user/override)
_CameraMLExampleState createState() => _CameraMLExampleState();
}
class _CameraMLExampleState extends State<CameraMLExample> {
CameraMLController? _cameraController;
[@override](/user/override)
void initState() {
super.initState();
_initializeCamera();
}
Future<void> _initializeCamera() async {
_cameraController = await CameraMLController.initialize();
if (!mounted) return;
setState(() {});
}
[@override](/user/override)
void dispose() {
_cameraController?.dispose();
super.dispose();
}
[@override](/user/override)
Widget build(BuildContext context) {
if (_cameraController == null) {
return Center(child: CircularProgressIndicator());
}
return Scaffold(
body: CameraMLPreview(controller: _cameraController!),
);
}
}
4. 实现机器学习功能
camera_ml
插件通常与 TensorFlow Lite 或其他机器学习框架集成,以执行实时图像分析。你可以使用 CameraMLController
来处理每一帧图像并进行机器学习推理。
以下是一个简单的示例,展示如何使用 camera_ml
进行实时对象检测:
import 'package:camera_ml/camera_ml.dart';
import 'package:flutter/material.dart';
class ObjectDetectionExample extends StatefulWidget {
[@override](/user/override)
_ObjectDetectionExampleState createState() => _ObjectDetectionExampleState();
}
class _ObjectDetectionExampleState extends State<ObjectDetectionExample> {
CameraMLController? _cameraController;
List<DetectedObject>? _detectedObjects;
[@override](/user/override)
void initState() {
super.initState();
_initializeCamera();
}
Future<void> _initializeCamera() async {
_cameraController = await CameraMLController.initialize();
_cameraController?.startImageStream((image) {
// 在这里执行对象检测
// 例如:_detectObjects(image);
});
if (!mounted) return;
setState(() {});
}
Future<void> _detectObjects(CameraMLImage image) async {
// 使用 TensorFlow Lite 或其他机器学习框架进行对象检测
// 例如:_detectedObjects = await tflite.runModelOnFrame(image);
setState(() {});
}
[@override](/user/override)
void dispose() {
_cameraController?.dispose();
super.dispose();
}
[@override](/user/override)
Widget build(BuildContext context) {
if (_cameraController == null) {
return Center(child: CircularProgressIndicator());
}
return Scaffold(
body: Stack(
children: [
CameraMLPreview(controller: _cameraController!),
if (_detectedObjects != null)
_buildDetectionOverlay(_detectedObjects!),
],
),
);
}
Widget _buildDetectionOverlay(List<DetectedObject> detectedObjects) {
return CustomPaint(
painter: ObjectDetectionPainter(detectedObjects),
);
}
}
class ObjectDetectionPainter extends CustomPainter {
final List<DetectedObject> detectedObjects;
ObjectDetectionPainter(this.detectedObjects);
[@override](/user/override)
void paint(Canvas canvas, Size size) {
final paint = Paint()
..color = Colors.red
..style = PaintingStyle.stroke
..strokeWidth = 2.0;
for (var object in detectedObjects) {
canvas.drawRect(object.boundingBox, paint);
}
}
[@override](/user/override)
bool shouldRepaint(ObjectDetectionPainter oldDelegate) {
return true;
}
}