Rust SQL查询优化器proof-of-sql-planner的使用,提供高性能SQL执行计划生成与验证功能

Rust SQL查询优化器proof-of-sql-planner的使用

proof-of-sql-planner是一个Rust库,提供高性能SQL执行计划生成与验证功能。以下是使用该库的完整示例:

安装

在Cargo.toml中添加依赖:

proof-of-sql-planner = "0.113.0"

或运行命令:

cargo add proof-of-sql-planner

基本使用示例

use proof_of_sql_planner::{Planner, QueryPlan};

fn main() {
    // 创建查询优化器实例
    let planner = Planner::new();
    
    // 定义SQL查询
    let sql = "SELECT * FROM users WHERE age > 25 ORDER BY name";
    
    // 生成查询计划
    let plan = planner.plan(sql).expect("Failed to generate query plan");
    
    // 输出查询计划
    println!("Generated query plan: {:?}", plan);
    
    // 验证查询计划
    if plan.validate() {
        println!("Query plan is valid");
    } else {
        println!("Query plan is invalid");
    }
    
    // 执行查询计划
    let results = plan.execute().expect("Failed to execute query plan");
    println!("Query results: {:?}", results);
}

高级功能示例

use proof_of_sql_planner::{Planner, QueryPlan, OptimizerOptions};

fn main() {
    // 创建带有自定义选项的优化器
    let options = OptimizerOptions {
        enable_parallel_execution: true,
        max_join_size: 10000,
        ..Default::default()
    };
    
    let planner = Planner::with_options(options);
    
    // 复杂SQL查询
    let sql = "
        SELECT u.name, o.total 
        FROM users u
        JOIN orders o ON u.id = o.user_id
        WHERE u.status = 'active'
        GROUP BY u.name, o.total
        HAVING COUNT(o.id) > 5
    ";
    
    // 生成并验证查询计划
    let plan = planner
        .plan(sql)
        .expect("Failed to generate query plan")
        .with_validation(true);
    
    // 优化查询计划
    let optimized_plan = plan.optimize().expect("Failed to optimize plan");
    
    // 执行优化后的查询
    let results = optimized_plan.execute().expect("Failed to execute query");
    
    // 处理结果
    for row in results {
        println!("User: {}, Total: {}", row["name"], row["total"]);
    }
}

性能分析示例

use proof_of_sql_planner::{Planner, QueryPlan, Profiler};

fn main() {
    let planner = Planner::new();
    let sql = "SELECT * FROM large_table WHERE category = 'books'";
    
    // 生成查询计划并启用性能分析
    let mut plan = planner.plan(sql).unwrap().with_profiling(true);
    
    // 执行查询
    plan.execute().unwrap();
    
    // 获取性能分析结果
    let profile = plan.profile().unwrap();
    println!("Execution time: {} ms", profile.execution_time_ms);
    println!("Memory usage: {} bytes", profile.memory_usage_bytes);
    println!("Scanned rows: {}", profile.rows_scanned);
}

完整示例demo

以下是一个结合了基本使用、高级功能和性能分析的完整示例:

use proof_of_sql_planner::{Planner, QueryPlan, OptimizerOptions, Profiler};

fn main() {
    // 1. 初始化带有自定义选项的优化器
    let options = OptimizerOptions {
        enable_parallel_execution: true,
        max_join_size: 5000,
        ..Default::default()
    };
    let planner = Planner::with_options(options);

    // 2. 定义复杂SQL查询
    let sql = "
        SELECT p.id, p.name, c.name as category, COUNT(o.id) as order_count
        FROM products p
        JOIN categories c ON p.category_id = c.id
        LEFT JOIN order_items o ON p.id = o.product_id
        WHERE p.price > 50.0
        GROUP BY p.id, p.name, c.name
        HAVING COUNT(o.id) > 0
        ORDER BY order_count DESC
    ";

    // 3. 生成查询计划并启用性能分析和验证
    let mut plan = planner
        .plan(sql)
        .expect("生成查询计划失败")
        .with_validation(true)
        .with_profiling(true);

    // 4. 优化查询计划
    let optimized_plan = plan.optimize().expect("优化查询计划失败");

    // 5. 执行查询并获取结果
    let results = optimized_plan.execute().expect("执行查询失败");

    // 6. 处理结果
    println!("查询结果:");
    for row in results {
        println!(
            "产品ID: {}, 名称: {}, 分类: {}, 订单数: {}",
            row["id"], row["name"], row["category"], row["order_count"]
        );
    }

    // 7. 获取性能分析数据
    let profile = plan.profile().unwrap();
    println!("\n性能分析:");
    println!("执行时间: {} 毫秒", profile.execution_time_ms);
    println!("内存使用: {} 字节", profile.memory_usage_bytes);
    println!("扫描行数: {}", profile.rows_scanned);
}

这个完整示例展示了如何:

  1. 配置自定义优化选项
  2. 处理复杂的多表连接查询
  3. 启用查询计划验证和性能分析
  4. 优化查询计划并执行
  5. 处理查询结果并显示性能指标

proof-of-sql-planner提供了强大的SQL查询优化和执行功能,适用于需要高性能SQL处理的Rust应用场景。


1 回复

proof-of-sql-planner: Rust高性能SQL查询优化器

简介

proof-of-sql-planner 是一个用Rust编写的SQL查询优化器,专注于高性能执行计划生成与验证功能。它提供了先进的查询优化算法,能够为SQL查询生成高效的执行计划,并通过验证机制确保计划的正确性。

主要特性

  • 高性能执行计划生成
  • 查询计划验证功能
  • 支持多种优化策略
  • 可扩展的架构设计
  • 内存安全保证(得益于Rust)

安装方法

在Cargo.toml中添加依赖:

[dependencies]
proof-of-sql-planner = "0.1"  # 请检查最新版本

基本使用方法

1. 创建查询优化器实例

use proof_of_sql_planner::Planner;

let planner = Planner::new();

2. 生成执行计划

let sql = "SELECT * FROM users WHERE age > 30 ORDER BY name";
let plan = planner.optimize(sql).expect("Failed to optimize query");

3. 验证执行计划

if planner.validate(&plan) {
    println!("Execution plan is valid");
} else {
    println!("Execution plan is invalid");
}

4. 执行查询

let results = planner.execute(&plan).expect("Failed to execute query");

高级用法

自定义优化规则

use proof_of_sql_planner::{Planner, OptimizerRule};

let mut planner = Planner::new();
planner.add_rule(OptimizerRule::new_custom_rule());

获取执行计划详情

let explain = planner.explain(&plan);
println!("Execution plan details:\n{}", explain);

性能分析

let stats = planner.analyze(&plan);
println!("Estimated cost: {}", stats.estimated_cost());
println!("Estimated row count: {}", stats.estimated_row_count());

示例:完整查询流程

use proof_of_sql_planner::Planner;

fn main() {
    // 创建优化器
    let mut planner = Planner::new();
    
    // 优化查询
    let sql = "
        SELECT u.name, o.total 
        FROM users u 
        JOIN orders o ON u.id = o.user_id 
        WHERE u.status = 'active' 
        ORDER BY o.total DESC 
        LIMIT 10
    ";
    
    let plan = planner.optimize(sql).unwrap();
    
    // 验证计划
    if !planner.validate(&plan) {
        panic!("Invalid execution plan generated");
    }
    
    // 执行查询
    let results = planner.execute(&plan).unwrap();
    
    // 处理结果
    for row in results {
        println!("Name: {}, Total: {}", row.get::<String>("name"), row.get::<f64>("total"));
    }
}

性能调优建议

  1. 对于复杂查询,考虑预先分析表统计信息:

    planner.analyze_table("users");
    planner.analyze_table("orders");
    
  2. 使用批量查询优化:

    let batch_sql = vec![
        "SELECT * FROM users WHERE age > 30",
        "SELECT * FROM products WHERE price < 100"
    ];
    let batch_plans = planner.optimize_batch(batch_sql);
    
  3. 启用高级优化选项:

    planner.enable_feature("advanced_join_optimization", true);
    planner.enable_feature("cost_based_optimization", true);
    

注意事项

  • 当前版本可能不支持所有SQL语法
  • 复杂查询可能需要手动提示优化器
  • 生产环境使用前应充分测试性能

proof-of-sql-planner为Rust生态提供了强大的SQL查询优化能力,特别适合需要高性能数据库操作的应用场景。

完整示例代码

use proof_of_sql_planner::{Planner, OptimizerRule};
use serde_json::{Value, json};

// 自定义优化规则示例
struct CustomFilterPushdownRule;
impl OptimizerRule for CustomFilterPushdownRule {
    fn apply(&self, plan: &mut Value) {
        // 实现自定义优化逻辑
        println!("Applying custom filter pushdown rule");
    }
}

fn main() {
    // 1. 创建带自定义规则的优化器
    let mut planner = Planner::new();
    planner.add_rule(Box::new(CustomFilterPushdownRule));
    
    // 2. 分析表统计信息(性能调优)
    planner.analyze_table("users");
    planner.analyze_table("orders");
    
    // 3. 启用高级优化功能
    planner.enable_feature("advanced_join_optimization", true);
    
    // 4. 定义复杂SQL查询
    let complex_sql = r#"
        WITH active_users AS (
            SELECT id, name 
            FROM users 
            WHERE status = 'active' AND last_login > NOW() - INTERVAL '30 days'
        )
        SELECT 
            au.name,
            COUNT(o.id) as order_count,
            AVG(o.amount) as avg_amount
        FROM 
            active_users au
        LEFT JOIN 
            orders o ON au.id = o.user_id
        GROUP BY 
            au.id, au.name
        HAVING 
            COUNT(o.id) > 5
        ORDER BY 
            avg_amount DESC
    "#;
    
    // 5. 优化查询并生成执行计划
    let plan = planner.optimize(complex_sql)
        .expect("Failed to optimize complex query");
    
    // 6. 验证执行计划
    if !planner.validate(&plan) {
        eprintln!("Generated execution plan is invalid");
        return;
    }
    
    // 7. 获取执行计划详情
    let explain = planner.explain(&plan);
    println!("Optimized Execution Plan:\n{}", explain);
    
    // 8. 执行查询
    let results = planner.execute(&plan)
        .expect("Failed to execute query");
    
    // 9. 处理查询结果
    println!("\nQuery Results:");
    for row in results {
        let name: String = row.get("name").unwrap();
        let order_count: i64 = row.get("order_count").unwrap();
        let avg_amount: f64 = row.get("avg_amount").unwrap();
        
        println!("User: {:20} Orders: {:3} Avg Amount: ${:.2}", 
                 name, order_count, avg_amount);
    }
    
    // 10. 性能分析
    let stats = planner.analyze(&plan);
    println!("\nPerformance Statistics:");
    println!("- Estimated cost: {}", stats.estimated_cost());
    println!("- Estimated row count: {}", stats.estimated_row_count());
    println!("- Actual execution time: {:?}", stats.execution_time());
}

这个完整示例演示了:

  1. 创建带自定义规则的查询优化器
  2. 性能调优准备工作
  3. 复杂SQL查询的优化和执行
  4. 执行计划验证和解释
  5. 查询结果处理
  6. 性能统计分析

示例包含了从基础到高级的各种用法,展示了proof-of-sql-planner在真实场景中的应用。

回到顶部