Rust SQL查询优化器proof-of-sql-planner的使用,提供高性能SQL执行计划生成与验证功能
Rust SQL查询优化器proof-of-sql-planner的使用
proof-of-sql-planner是一个Rust库,提供高性能SQL执行计划生成与验证功能。以下是使用该库的完整示例:
安装
在Cargo.toml中添加依赖:
proof-of-sql-planner = "0.113.0"
或运行命令:
cargo add proof-of-sql-planner
基本使用示例
use proof_of_sql_planner::{Planner, QueryPlan};
fn main() {
// 创建查询优化器实例
let planner = Planner::new();
// 定义SQL查询
let sql = "SELECT * FROM users WHERE age > 25 ORDER BY name";
// 生成查询计划
let plan = planner.plan(sql).expect("Failed to generate query plan");
// 输出查询计划
println!("Generated query plan: {:?}", plan);
// 验证查询计划
if plan.validate() {
println!("Query plan is valid");
} else {
println!("Query plan is invalid");
}
// 执行查询计划
let results = plan.execute().expect("Failed to execute query plan");
println!("Query results: {:?}", results);
}
高级功能示例
use proof_of_sql_planner::{Planner, QueryPlan, OptimizerOptions};
fn main() {
// 创建带有自定义选项的优化器
let options = OptimizerOptions {
enable_parallel_execution: true,
max_join_size: 10000,
..Default::default()
};
let planner = Planner::with_options(options);
// 复杂SQL查询
let sql = "
SELECT u.name, o.total
FROM users u
JOIN orders o ON u.id = o.user_id
WHERE u.status = 'active'
GROUP BY u.name, o.total
HAVING COUNT(o.id) > 5
";
// 生成并验证查询计划
let plan = planner
.plan(sql)
.expect("Failed to generate query plan")
.with_validation(true);
// 优化查询计划
let optimized_plan = plan.optimize().expect("Failed to optimize plan");
// 执行优化后的查询
let results = optimized_plan.execute().expect("Failed to execute query");
// 处理结果
for row in results {
println!("User: {}, Total: {}", row["name"], row["total"]);
}
}
性能分析示例
use proof_of_sql_planner::{Planner, QueryPlan, Profiler};
fn main() {
let planner = Planner::new();
let sql = "SELECT * FROM large_table WHERE category = 'books'";
// 生成查询计划并启用性能分析
let mut plan = planner.plan(sql).unwrap().with_profiling(true);
// 执行查询
plan.execute().unwrap();
// 获取性能分析结果
let profile = plan.profile().unwrap();
println!("Execution time: {} ms", profile.execution_time_ms);
println!("Memory usage: {} bytes", profile.memory_usage_bytes);
println!("Scanned rows: {}", profile.rows_scanned);
}
完整示例demo
以下是一个结合了基本使用、高级功能和性能分析的完整示例:
use proof_of_sql_planner::{Planner, QueryPlan, OptimizerOptions, Profiler};
fn main() {
// 1. 初始化带有自定义选项的优化器
let options = OptimizerOptions {
enable_parallel_execution: true,
max_join_size: 5000,
..Default::default()
};
let planner = Planner::with_options(options);
// 2. 定义复杂SQL查询
let sql = "
SELECT p.id, p.name, c.name as category, COUNT(o.id) as order_count
FROM products p
JOIN categories c ON p.category_id = c.id
LEFT JOIN order_items o ON p.id = o.product_id
WHERE p.price > 50.0
GROUP BY p.id, p.name, c.name
HAVING COUNT(o.id) > 0
ORDER BY order_count DESC
";
// 3. 生成查询计划并启用性能分析和验证
let mut plan = planner
.plan(sql)
.expect("生成查询计划失败")
.with_validation(true)
.with_profiling(true);
// 4. 优化查询计划
let optimized_plan = plan.optimize().expect("优化查询计划失败");
// 5. 执行查询并获取结果
let results = optimized_plan.execute().expect("执行查询失败");
// 6. 处理结果
println!("查询结果:");
for row in results {
println!(
"产品ID: {}, 名称: {}, 分类: {}, 订单数: {}",
row["id"], row["name"], row["category"], row["order_count"]
);
}
// 7. 获取性能分析数据
let profile = plan.profile().unwrap();
println!("\n性能分析:");
println!("执行时间: {} 毫秒", profile.execution_time_ms);
println!("内存使用: {} 字节", profile.memory_usage_bytes);
println!("扫描行数: {}", profile.rows_scanned);
}
这个完整示例展示了如何:
- 配置自定义优化选项
- 处理复杂的多表连接查询
- 启用查询计划验证和性能分析
- 优化查询计划并执行
- 处理查询结果并显示性能指标
proof-of-sql-planner提供了强大的SQL查询优化和执行功能,适用于需要高性能SQL处理的Rust应用场景。
1 回复
proof-of-sql-planner: Rust高性能SQL查询优化器
简介
proof-of-sql-planner 是一个用Rust编写的SQL查询优化器,专注于高性能执行计划生成与验证功能。它提供了先进的查询优化算法,能够为SQL查询生成高效的执行计划,并通过验证机制确保计划的正确性。
主要特性
- 高性能执行计划生成
- 查询计划验证功能
- 支持多种优化策略
- 可扩展的架构设计
- 内存安全保证(得益于Rust)
安装方法
在Cargo.toml中添加依赖:
[dependencies]
proof-of-sql-planner = "0.1" # 请检查最新版本
基本使用方法
1. 创建查询优化器实例
use proof_of_sql_planner::Planner;
let planner = Planner::new();
2. 生成执行计划
let sql = "SELECT * FROM users WHERE age > 30 ORDER BY name";
let plan = planner.optimize(sql).expect("Failed to optimize query");
3. 验证执行计划
if planner.validate(&plan) {
println!("Execution plan is valid");
} else {
println!("Execution plan is invalid");
}
4. 执行查询
let results = planner.execute(&plan).expect("Failed to execute query");
高级用法
自定义优化规则
use proof_of_sql_planner::{Planner, OptimizerRule};
let mut planner = Planner::new();
planner.add_rule(OptimizerRule::new_custom_rule());
获取执行计划详情
let explain = planner.explain(&plan);
println!("Execution plan details:\n{}", explain);
性能分析
let stats = planner.analyze(&plan);
println!("Estimated cost: {}", stats.estimated_cost());
println!("Estimated row count: {}", stats.estimated_row_count());
示例:完整查询流程
use proof_of_sql_planner::Planner;
fn main() {
// 创建优化器
let mut planner = Planner::new();
// 优化查询
let sql = "
SELECT u.name, o.total
FROM users u
JOIN orders o ON u.id = o.user_id
WHERE u.status = 'active'
ORDER BY o.total DESC
LIMIT 10
";
let plan = planner.optimize(sql).unwrap();
// 验证计划
if !planner.validate(&plan) {
panic!("Invalid execution plan generated");
}
// 执行查询
let results = planner.execute(&plan).unwrap();
// 处理结果
for row in results {
println!("Name: {}, Total: {}", row.get::<String>("name"), row.get::<f64>("total"));
}
}
性能调优建议
-
对于复杂查询,考虑预先分析表统计信息:
planner.analyze_table("users"); planner.analyze_table("orders");
-
使用批量查询优化:
let batch_sql = vec![ "SELECT * FROM users WHERE age > 30", "SELECT * FROM products WHERE price < 100" ]; let batch_plans = planner.optimize_batch(batch_sql);
-
启用高级优化选项:
planner.enable_feature("advanced_join_optimization", true); planner.enable_feature("cost_based_optimization", true);
注意事项
- 当前版本可能不支持所有SQL语法
- 复杂查询可能需要手动提示优化器
- 生产环境使用前应充分测试性能
proof-of-sql-planner为Rust生态提供了强大的SQL查询优化能力,特别适合需要高性能数据库操作的应用场景。
完整示例代码
use proof_of_sql_planner::{Planner, OptimizerRule};
use serde_json::{Value, json};
// 自定义优化规则示例
struct CustomFilterPushdownRule;
impl OptimizerRule for CustomFilterPushdownRule {
fn apply(&self, plan: &mut Value) {
// 实现自定义优化逻辑
println!("Applying custom filter pushdown rule");
}
}
fn main() {
// 1. 创建带自定义规则的优化器
let mut planner = Planner::new();
planner.add_rule(Box::new(CustomFilterPushdownRule));
// 2. 分析表统计信息(性能调优)
planner.analyze_table("users");
planner.analyze_table("orders");
// 3. 启用高级优化功能
planner.enable_feature("advanced_join_optimization", true);
// 4. 定义复杂SQL查询
let complex_sql = r#"
WITH active_users AS (
SELECT id, name
FROM users
WHERE status = 'active' AND last_login > NOW() - INTERVAL '30 days'
)
SELECT
au.name,
COUNT(o.id) as order_count,
AVG(o.amount) as avg_amount
FROM
active_users au
LEFT JOIN
orders o ON au.id = o.user_id
GROUP BY
au.id, au.name
HAVING
COUNT(o.id) > 5
ORDER BY
avg_amount DESC
"#;
// 5. 优化查询并生成执行计划
let plan = planner.optimize(complex_sql)
.expect("Failed to optimize complex query");
// 6. 验证执行计划
if !planner.validate(&plan) {
eprintln!("Generated execution plan is invalid");
return;
}
// 7. 获取执行计划详情
let explain = planner.explain(&plan);
println!("Optimized Execution Plan:\n{}", explain);
// 8. 执行查询
let results = planner.execute(&plan)
.expect("Failed to execute query");
// 9. 处理查询结果
println!("\nQuery Results:");
for row in results {
let name: String = row.get("name").unwrap();
let order_count: i64 = row.get("order_count").unwrap();
let avg_amount: f64 = row.get("avg_amount").unwrap();
println!("User: {:20} Orders: {:3} Avg Amount: ${:.2}",
name, order_count, avg_amount);
}
// 10. 性能分析
let stats = planner.analyze(&plan);
println!("\nPerformance Statistics:");
println!("- Estimated cost: {}", stats.estimated_cost());
println!("- Estimated row count: {}", stats.estimated_row_count());
println!("- Actual execution time: {:?}", stats.execution_time());
}
这个完整示例演示了:
- 创建带自定义规则的查询优化器
- 性能调优准备工作
- 复杂SQL查询的优化和执行
- 执行计划验证和解释
- 查询结果处理
- 性能统计分析
示例包含了从基础到高级的各种用法,展示了proof-of-sql-planner在真实场景中的应用。