Rust密码学库ic_bls12_381的使用:支持BLS12-381曲线的高效零知识证明和数字签名
Rust密码学库ic_bls12_381的使用:支持BLS12-381曲线的高效零知识证明和数字签名
ic_bls12_381是zkcrypto/bls12_381的一个分支,包含了一些实现互联网计算机非交互式分布式密钥生成算法所需的修改。这个crate提供了BLS12-381配对友好椭圆曲线构造的实现。
重要说明
- 此实现尚未经过审查或审计。使用时需自行承担风险。
- 此实现针对Rust 1.56或更高版本
- 此实现不需要Rust标准库
- 除非明确说明,否则所有操作都是恒定时间的
特性
bits
(默认启用): 提供获取标量位迭代器的APIgroups
(默认启用): 提供使用G1、G2和GT进行群运算的APIpairings
(默认启用): 提供执行配对的一些APIalloc
(默认启用): 启用需要分配器的API,包括配对优化nightly
: 启用subtle/nightly
,尝试防止可能危及恒定时间操作的编译器优化。需要夜间Rust编译器experimental
: 启用实验性功能。这些功能没有向后兼容性保证,可能随时更改
曲线描述
BLS12-381是来自BLS家族的配对友好椭圆曲线构造,嵌入度为12。它建立在381位素数域GF§上…
示例代码
以下是使用ic_bls12_381库进行基本操作的示例:
use ic_bls12_381::{G1Projective, G2Projective, Scalar};
fn main() {
// 生成随机标量
let a = Scalar::random(&mut rand::thread_rng());
let b = Scalar::random(&mut rand::thread_rng());
// 标量运算
let c = a + b;
let d = a * b;
// G1群运算
let g1 = G1Projective::generator();
let g1_a = g1 * a;
let g1_b = g1 * b;
let g1_sum = g1_a + g1_b;
// G2群运算
let g2 = G2Projective::generator();
let g2_a = g2 * a;
let g2_b = g2 * b;
let g2_sum = g2_a + g2_b;
println!("标量运算:");
println!("a + b = {:?}", c);
println!("a * b = {:?}", d);
println!("\nG1群运算:");
println!("g1 * a = {:?}", g1_a);
println!("g1 * b = {:?}", g1_b);
println!("g1_a + g1_b = {:?}", g1_sum);
println!("\nG2群运算:");
println!("g2 * a = {:?}", g2_a);
println!("g2 * b = {:?}", g2_b);
println!("g2_a + g2_b = {:?}", g2_sum);
}
配对操作示例
use ic_bls12_381::{G1Projective, G2Projective, pairing};
fn pairing_example() {
// 生成随机标量
let a = Scalar::random(&mut rand::thread_rng());
let b = Scalar::random(&mut rand::thread_rng());
// 计算G1和G2的点
let g1 = G1Projective::generator();
let g2 = G2Projective::generator();
let g1_a = g1 * a;
let g2_b = g2 * b;
// 计算配对
let pairing_result = pairing(&g1_a, &g2_b);
println!("配对结果:");
println!("e(g1^a, g2^b) = {:?}", pairing_result);
}
完整示例demo
// 完整示例:包含标量运算、群运算和配对操作
use ic_bls12_381::{G1Projective, G2Projective, Scalar, pairing};
use rand::thread_rng;
fn main() {
// 1. 标量运算演示
scalar_operations();
// 2. 群运算演示
group_operations();
// 3. 配对操作演示
pairing_operations();
}
fn scalar_operations() {
println!("=== 标量运算演示 ===");
// 生成随机标量
let mut rng = thread_rng();
let a = Scalar::random(&mut rng);
let b = Scalar::random(&mut rng);
// 基本运算
let sum = a + b;
let product = a * b;
let difference = a - b;
println!("a: {:?}", a);
println!("b: {:?}", b);
println!("a + b: {:?}", sum);
println!("a * b: {:?}", product);
println!("a - b: {:?}", difference);
println!();
}
fn group_operations() {
println!("=== 群运算演示 ===");
let mut rng = thread_rng();
let scalar = Scalar::random(&mut rng);
// G1群操作
let g1 = G1Projective::generator();
let g1_mul = g1 * scalar;
// G2群操作
let g2 = G2Projective::generator();
let g2_mul = g2 * scalar;
println!("标量: {:?}", scalar);
println!("G1生成元: {:?}", g1);
println!("G1点乘结果: {:?}", g1_mul);
println!("G2生成元: {:?}", g2);
println!("G2点乘结果: {:?}", g2_mul);
println!();
}
fn pairing_operations() {
println!("=== 配对操作演示 ===");
let mut rng = thread_rng();
let a = Scalar::random(&mut rng);
let b = Scalar::random(&mut rng);
// 准备配对输入
let g1 = G1Projective::generator();
let g2 = G2Projective::generator();
let g1_a = g1 * a;
let g2_b = g2 * b;
// 计算配对
let pairing = pairing(&g1_a, &g2_b);
println!("标量a: {:?}", a);
println!("标量b: {:?}", b);
println!("配对结果: {:?}", pairing);
}
安装
在项目目录中运行以下Cargo命令:
cargo add ic_bls12_381
或者在Cargo.toml中添加以下行:
ic_bls12_381 = "0.10.1"
许可证
根据以下任一许可证授权:
- Apache License, Version 2.0
- MIT license
贡献
除非您明确声明,否则根据Apache-2.0许可证,您有意提交包含在作品中的任何贡献都应按照上述方式双重许可,不附加任何额外条款或条件。
1 回复
Rust密码学库ic_bls12_381的使用指南
简介
ic_bls12_381是一个Rust实现的密码学库,专门支持BLS12-381椭圆曲线。这个曲线在零知识证明系统和数字签名方案中特别有用,被广泛应用于Zcash、Filecoin、Ethereum 2.0等区块链项目中。
该库提供了高效的原语操作,包括:
- 配对友好椭圆曲线运算
- BLS签名方案实现
- 零知识证明构建块
安装方法
在Cargo.toml中添加依赖:
[dependencies]
ic-bls12-381 = "0.3"
基本使用示例
1. 初始化曲线参数
use ic_bls12_381::{G1Projective, G2Projective, Scalar};
// 初始化群元素
let g1 = G1Projective::generator();
let g2 = G2Projective::generator();
// 创建随机标量
let scalar = Scalar::random(&mut rand::thread_rng());
2. BLS签名示例
use ic_bls12_381::{G1Projective, G2Projective, Scalar, hash_to_curve};
// 私钥 (随机标量)
let sk = Scalar::random(&mut rand::thread_rng());
// 公钥 (G1元素)
let pk = G1Projective::generator() * sk;
// 要签名的消息
let message = b"Hello, BLS!";
// 签名 (将消息哈希到G2并乘以私钥)
let msg_hash = hash_to_curve::hash_to_g2(message);
let signature = msg_hash * sk;
// 验证签名
let left_pairing = ic_bls12_381::pairing(&pk, &msg_hash);
let right_pairing = ic_bls12_381::pairing(&G1Projective::generator(), &signature);
assert_eq!(left_pairing, right_pairing);
3. 零知识证明构建块
use ic_bls12_381::{G1Projective, Scalar};
// 证明者知道x使得g^x = y,而不泄露x
let x = Scalar::random(&mut rand::thread_rng()); // 秘密值
let g = G1Projective::generator();
let y = g * x;
// 承诺阶段
let r = Scalar::random(&mut rand::thread_rng());
let t = g * r;
// 挑战阶段 (实际应用中应使用Fiat-Shamir转换)
let c = Scalar::random(&mut rand::thread_rng());
// 响应阶段
let s = r + c * x;
// 验证
assert_eq!(g * s, t + y * c);
高级功能
批量验证签名
use ic_bls12_381::{G1Projective, G2Projective, Scalar, multi_pairing};
// 假设有多个签名需要验证
let signatures: Vec<(G1Projective, G2Projective)> = /* ... */;
// 使用多配对进行批量验证
let mut pairs = vec![];
for (pk, sig) in signatures {
pairs.push((pk, hash_to_curve::hash_to_g2(b"message")));
pairs.push((G1Projective::generator().neg(), sig));
}
let result = multi_pairing(&pairs);
assert!(result.is_one());
性能优化技巧
use ic_bls12_381::{G1Projective, G2Projective};
// 使用批量化操作提高性能
let points_g1 = vec![G1Projective::generator(); 100];
let scalars = vec![Scalar::from(2u64); 100];
// 批量标量乘法
let results = G1Projective::batch_mul(&points_g1, &scalars);
注意事项
- 该库主要针对WebAssembly环境优化,但也适用于其他平台
- 生产环境中使用时,请确保随机数生成器是密码学安全的
- 零知识证明系统通常需要更高级的构造,此库提供基础构建块
完整示例代码
use ic_bls12_381::{G1Projective, G2Projective, Scalar, hash_to_curve, pairing};
use rand::thread_rng;
fn main() {
// 1. 初始化曲线参数
let g1 = G1Projective::generator();
let g2 = G2Projective::generator();
let scalar = Scalar::random(&mut thread_rng());
println!("初始化完成: g1={:?}, g2={:?}, scalar={:?}", g1, g2, scalar);
// 2. BLS签名示例
let sk = Scalar::random(&mut thread_rng());
let pk = g1 * sk;
let message = b"Test message for BLS signature";
let msg_hash = hash_to_curve::hash_to_g2(message);
let signature = msg_hash * sk;
let left_pairing = pairing(&pk, &msg_hash);
let right_pairing = pairing(&g1, &signature);
assert_eq!(left_pairing, right_pairing);
println!("BLS签名验证成功!");
// 3. 零知识证明示例
let x = Scalar::random(&mut thread_rng());
let y = g1 * x;
let r = Scalar::random(&mut thread_rng());
let t = g1 * r;
let c = Scalar::random(&mut thread_rng());
let s = r + c * x;
assert_eq!(g1 * s, t + y * c);
println!("零知识证明验证成功!");
// 4. 批量操作示例
let points = vec![g1; 10];
let scalars = vec![Scalar::from(3u64); 10];
let batch_results = G1Projective::batch_mul(&points, &scalars);
println!("批量标量乘法完成,结果长度: {}", batch_results.len());
}