Rust OpenMetrics解析库openmetrics-parser的使用,高效解析和操作Prometheus监控指标格式
Rust OpenMetrics解析库openmetrics-parser的使用,高效解析和操作Prometheus监控指标格式
以下是内容中提供的示例代码:
use openmetrics_parser::OpenMetricsParser;
use openmetrics_parser::types::*;
fn main() {
// 示例 OpenMetrics/Prometheus 格式数据
let metrics_data = r#"
# HELP http_requests_total The total number of HTTP requests.
# TYPE http_requests_total counter
http_requests_total{method="post",code="200"} 1027 1395066363000
http_requests_total{method="post",code="400"} 3 1395066363000
# HELP cpu_usage Current CPU usage
# TYPE cpu_usage gauge
cpu_usage{core="0"} 0.54
cpu_usage{core="1"} 0.62
# HELP request_duration_seconds A histogram of the request duration.
# TYPE request_duration_seconds histogram
request_duration_seconds_bucket{le="0.05"} 24054
request_duration_seconds_bucket{le="0.1"} 33444
request_duration_seconds_bucket{le="0.2"} 100392
request_duration_seconds_bucket{le="0.5"} 129389
request_duration_seconds_bucket{le="1"} 133988
request_duration_seconds_bucket{le="+Inf"} 144320
request_duration_seconds_sum 53423
request_duration_seconds_count 144320
# HELP rpc_duration_seconds A summary of the RPC duration in seconds.
# TYPE rpc_duration_seconds summary
rpc_duration_seconds{quantile="0.01"} 3102
rpc_duration_seconds{quantile="0.05"} 3272
rpc_duration_seconds{quantile="0.5"} 4773
rpc_duration_seconds_sum 1.7560473e+07
rpc_duration_seconds_count 2693
"#;
// 创建解析器实例
let parser = OpenMetricsParser::new();
// 解析指标数据
let result = parser.parse(metrics_data);
// 处理解析结果
match result {
Ok(metrics) => {
println!("成功解析 {} 个指标族", metrics.len());
// 遍历所有指标族
for metric_family in metrics {
println!("\n指标名称: {}", metric_family.name);
println!("帮助文本: {}", metric_family.help);
println!("类型: {:?}", metric_family.metric_type);
// 遍历指标族中的所有指标
for metric in metric_family.metrics {
match metric {
Metric::Counter(counter) => {
println!("计数器值: {}", counter.value);
for label in counter.labels {
println!(" 标签: {} = {}", label.name, label.value);
}
},
Metric::Gauge(gauge) => {
println!("测量值: {}", gauge.value);
for label in gauge.labels {
println!(" 标签: {} = {}", label.name, label.value);
}
},
Metric::Histogram(histogram) => {
println!("直方图总和: {}", histogram.sum);
println!("直方图计数: {}", histogram.count);
for bucket in histogram.buckets {
println!(" 桶(le={}): {}", bucket.upper_bound, bucket.count);
}
for label in histogram.labels {
println!(" 标签: {} = {}", label.name, label.value);
}
},
Metric::Summary(summary) => {
println!("摘要总和: {}", summary.sum);
println!("摘要计数: {}", summary.count);
for quantile in summary.quantiles {
println!(" 分位数({}): {}", quantile.quantile, quantile.value);
}
for label in summary.labels {
println!(" 标签: {} = {}", label.name, label.value);
}
},
}
}
}
},
Err(e) => {
eprintln!("解析错误: {}", e);
}
}
}
完整示例代码
以下是一个更完整的示例,展示如何从文件中读取指标数据并处理解析结果:
use std::fs;
use openmetrics_parser::OpenMetricsParser;
use openmetrics_parser::types::*;
fn main() -> Result<(), Box<dyn std::error::Error>> {
// 从文件读取指标数据
let metrics_data = fs::read_to_string("metrics.txt")?;
// 创建解析器实例
let parser = OpenMetricsParser::new();
// 解析指标数据
let result = parser.parse(&metrics_data);
// 处理解析结果
match result {
Ok(metrics) => {
println!("成功解析 {} 个指标族", metrics.len());
// 遍历所有指标族
for metric_family in metrics {
println!("\n指标名称: {}", metric_family.name);
println!("帮助文本: {}", metric_family.help);
println!("类型: {:?}", metric_family.metric_type);
// 遍历指标族中的所有指标
for metric in metric_family.metrics {
match metric {
Metric::Counter(counter) => {
println!("计数器值: {}", counter.value);
println!("时间戳: {:?}", counter.timestamp);
for label in counter.labels {
println!(" 标签: {} = {}", label.name, label.value);
}
},
Metric::Gauge(gauge) => {
println!("测量值: {}", gauge.value);
println!("时间戳: {:?}", gauge.timestamp);
for label in gauge.labels {
println!(" 标签: {} = {}", label.name, label.value);
}
},
Metric::Histogram(histogram) => {
println!("直方图总和: {}", histogram.sum);
println!("直方图计数: {}", histogram.count);
println!("时间戳: {:?}", histogram.timestamp);
for bucket in histogram.buckets {
println!(" 桶(le={}): {}", bucket.upper_bound, bucket.count);
}
for label in histogram.labels {
println!(" 标签: {} = {}", label.name, label.value);
}
},
Metric::Summary(summary) => {
println!("摘要总和: {}", summary.sum);
println!("摘要计数: {}", summary.count);
println!("时间戳: {:?}", summary.timestamp);
for quantile in summary.quantiles {
println!(" 分位数({}): {}", quantile.quantile, quantile.value);
}
for label in summary.labels {
println!(" 标签: {} = {}", label.name, label.value);
}
},
}
}
}
},
Err(e) => {
eprintln!("解析错误: {}", e);
}
}
Ok(())
}
流式处理示例
对于大文件或网络流数据,可以使用流式处理方式:
use std::io::{BufRead, BufReader};
use std::fs::File;
use openmetrics_parser::OpenMetricsParser;
fn process_large_file() -> Result<(), Box<dyn std::error::Error>> {
// 打开文件
let file = File::open("large_metrics.txt")?;
let reader = BufReader::new(file);
// 创建解析器实例
let mut parser = OpenMetricsParser::new();
// 逐行读取并解析
for line in reader.lines() {
let line = line?;
parser.parse_chunk(&line)?;
}
// 获取最终解析结果
let metrics = parser.finalize()?;
// 处理解析结果...
println!("成功解析 {} 个指标族", metrics.len());
Ok(())
}
自定义解析选项示例
use openmetrics_parser::OpenMetricsParser;
fn custom_parser() {
// 创建自定义解析器
let parser = OpenMetricsParser::builder()
.allow_invalid_utf8(true) // 允许无效UTF-8字符
.ignore_timestamps(false) // 不忽略时间戳
.build();
// 使用自定义解析器解析数据...
let metrics_data = "...";
let result = parser.parse(metrics_data);
// 处理结果...
}
以上示例展示了openmetrics-parser库的基本用法和高级功能,包括文件读取、流式处理和自定义解析选项。
1 回复
Rust OpenMetrics解析库openmetrics-parser使用指南
概述
openmetrics-parser是一个用于解析OpenMetrics/Prometheus监控指标格式的Rust库。它提供了高效解析和操作Prometheus监控指标的能力,支持OpenMetrics文本格式的完整解析。
主要特性
- 完全兼容OpenMetrics文本格式
- 零拷贝解析
- 支持所有Prometheus指标类型
- 提供便捷的指标访问接口
- 良好的错误处理
安装
在Cargo.toml中添加依赖:
[dependencies]
openmetrics-parser = "0.5"
基本使用方法
解析OpenMetrics文本
use openmetrics_parser::OpenMetricsParser;
let text = r#"
# TYPE http_requests_total counter
# HELP http_requests_total The total number of HTTP requests.
http_requests_total{method="post",code="200"} 1027 1395066363000
http_requests_total{method="post",code="400"} 3 1395066363000
"#;
let parser = OpenMetricsParser::new();
let result = parser.parse(text).unwrap();
println!("解析到的指标数量: {}", result.metrics().count());
访问解析后的指标
for metric in result.metrics() {
println!("指标名称: {}", metric.name());
println!("指标类型: {:?}", metric.metric_type());
println!("帮助文本: {:?}", metric.help());
for sample in metric.samples() {
println!(" 样本值: {}", sample.value());
println!(" 时间戳: {:?}", sample.timestamp());
for (label, value) in sample.labels() {
println!(" 标签: {} = {}", label, value);
}
}
}
创建自定义指标
use openmetrics_parser::model::{Metric, MetricType, Sample};
let mut metric = Metric::new("custom_metric", MetricType::Gauge);
metric.add_sample(Sample::new(42.0).with_label("env", "production"));
let parser = OpenMetricsParser::new();
let text = parser.serialize_metric(&metric);
println!("生成的OpenMetrics文本:\n{}", text);
高级用法
处理大文件
对于大文件,可以使用流式解析:
use std::fs::File;
use std::io::BufReader;
use openmetrics_parser::OpenMetricsParser;
let file = File::open("metrics.txt").unwrap();
let reader = BufReader::new(file);
let parser = OpenMetricsParser::new();
let result = parser.parse_from_reader(reader).unwrap();
// 处理结果...
错误处理
let invalid_text = "invalid metric format";
match parser.parse(invalid_text) {
Ok(result) => {
// 处理成功结果
},
Err(e) => {
eprintln!("解析错误: {}", e);
// 处理错误
}
}
性能提示
- 对于重复解析,重用
OpenMetricsParser
实例 - 大文件使用
parse_from_reader
而不是parse
- 不需要时间戳时可以忽略它们以提高性能
完整示例:构建监控指标处理器
use openmetrics_parser::model::{Metric, MetricType, Sample};
use openmetrics_parser::OpenMetricsParser;
use std::collections::HashMap;
// 自定义指标处理器结构体
struct MetricProcessor {
parser: OpenMetricsParser,
metrics: HashMap<String, Metric>,
}
impl MetricProcessor {
// 创建新的处理器实例
pub fn new() -> Self {
Self {
parser: OpenMetricsParser::new(),
metrics: HashMap::new(),
}
}
// 解析OpenMetrics文本并存储指标
pub fn parse_and_store(&mut self, text: &str) -> Result<(), String> {
let result = self.parser.parse(text).map_err(|e| e.to_string())?;
for metric in result.metrics() {
let name = metric.name().to_string();
let mut new_metric = Metric::new(&name, metric.metric_type());
if let Some(help) = metric.help() {
new_metric.set_help(help);
}
for sample in metric.samples() {
let mut new_sample = Sample::new(sample.value());
for (label, value) in sample.labels() {
new_sample = new_sample.with_label(label, value);
}
if let Some(timestamp) = sample.timestamp() {
new_sample = new_sample.with_timestamp(timestamp);
}
new_metric.add_sample(new_sample);
}
self.metrics.insert(name, new_metric);
}
Ok(())
}
// 获取所有指标
pub fn get_metrics(&self) -> Vec<&Metric> {
self.metrics.values().collect()
}
// 获取特定指标
pub fn get_metric(&self, name: &str) -> Option<&Metric> {
self.metrics.get(name)
}
// 导出为OpenMetrics格式文本
pub fn export(&self) -> String {
let mut output = String::new();
for metric in self.metrics.values() {
output.push_str(&self.parser.serialize_metric(metric));
output.push('\n');
}
output
}
}
fn main() {
let mut processor = MetricProcessor::new();
// 示例OpenMetrics文本
let text = r#"
# TYPE cpu_usage gauge
# HELP cpu_usage Current CPU usage percentage
cpu_usage{core="0"} 25.3
cpu_usage{core="1"} 32.1
# TYPE memory_bytes gauge
# HELP memory_bytes Memory usage in bytes
memory_bytes{type="free"} 1024000
memory_bytes{type="used"} 2048000
"#;
// 解析并存储指标
match processor.parse_and_store(text) {
Ok(_) => {
println!("成功解析并存储指标");
// 获取并打印特定指标
if let Some(cpu_metric) = processor.get_metric("cpu_usage") {
println!("CPU指标:");
for sample in cpu_metric.samples() {
println!(" {}: {}", sample.labels().next().unwrap().1, sample.value());
}
}
// 导出所有指标
println!("\n导出的OpenMetrics格式:");
println!("{}", processor.export());
},
Err(e) => {
eprintln!("解析错误: {}", e);
}
}
}
这个库非常适合需要处理Prometheus/OpenMetrics格式数据的Rust应用程序,特别是在构建监控工具、指标代理或自定义导出器时。