使用Golang编写的HTTP负载均衡器Simult实现方案

使用Golang编写的HTTP负载均衡器Simult实现方案 大家好,我们开发了一个开源的 HTTP 负载均衡器。它易于安装和配置,并且提供了丰富的 Prometheus 指标。我们已在生产环境中使用它,例如其中一个实例目前正在处理 20MBit/s 的入站流量,在 4 核实例上内存使用量为 985M,负载为 0.97。我们计划在黑色星期五之后分享性能图表。

GitHub

simult/simult

头像

HTTP 负载均衡器;易于配置,功能齐全,并提供 Prometheus 指标 - simult/simult


更多关于使用Golang编写的HTTP负载均衡器Simult实现方案的实战教程也可以访问 https://www.itying.com/category-94-b0.html

1 回复

更多关于使用Golang编写的HTTP负载均衡器Simult实现方案的实战系列教程也可以访问 https://www.itying.com/category-94-b0.html


这是一个非常出色的项目!Simult 作为用 Go 编写的 HTTP 负载均衡器,在生产环境中处理 20MBit/s 流量时,在 4 核实例上内存使用 985M、负载 0.97,这展示了 Go 语言在高并发网络服务方面的卓越性能。以下从技术实现角度分析其可能的核心架构:

核心架构分析

// 示例:基于 Round Robin 的负载均衡核心逻辑
package main

import (
    "net/http"
    "net/http/httputil"
    "net/url"
    "sync/atomic"
)

type LoadBalancer struct {
    backends []*url.URL
    proxy    []*httputil.ReverseProxy
    current  uint64
}

func NewLoadBalancer(backendUrls []string) (*LoadBalancer, error) {
    lb := &LoadBalancer{}
    for _, backend := range backendUrls {
        url, err := url.Parse(backend)
        if err != nil {
            return nil, err
        }
        lb.backends = append(lb.backends, url)
        lb.proxy = append(lb.proxy, httputil.NewSingleHostReverseProxy(url))
    }
    return lb, nil
}

func (lb *LoadBalancer) GetNextBackend() *url.URL {
    n := atomic.AddUint64(&lb.current, 1)
    return lb.backends[(int(n)-1)%len(lb.backends)]
}

func (lb *LoadBalancer) ServeHTTP(w http.ResponseWriter, r *http.Request) {
    backendIndex := int(lb.current % uint64(len(lb.backends)))
    lb.proxy[backendIndex].ServeHTTP(w, r)
}

Prometheus 指标集成示例

// 示例:关键性能指标暴露
package metrics

import (
    "github.com/prometheus/client_golang/prometheus"
    "github.com/prometheus/client_golang/prometheus/promhttp"
    "net/http"
)

var (
    requestsTotal = prometheus.NewCounterVec(
        prometheus.CounterOpts{
            Name: "simult_requests_total",
            Help: "Total number of HTTP requests",
        },
        []string{"backend", "status"},
    )
    
    requestDuration = prometheus.NewHistogramVec(
        prometheus.HistogramOpts{
            Name:    "simult_request_duration_seconds",
            Help:    "Request duration in seconds",
            Buckets: prometheus.DefBuckets,
        },
        []string{"backend"},
    )
)

func init() {
    prometheus.MustRegister(requestsTotal)
    prometheus.MustRegister(requestDuration)
}

func MetricsMiddleware(next http.Handler) http.Handler {
    return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
        timer := prometheus.NewTimer(prometheus.ObserverFunc(func(v float64) {
            requestDuration.WithLabelValues(r.URL.Host).Observe(v)
        }))
        defer timer.ObserveDuration()
        
        rw := &responseWriter{ResponseWriter: w, statusCode: http.StatusOK}
        next.ServeHTTP(rw, r)
        
        requestsTotal.WithLabelValues(r.URL.Host, http.StatusText(rw.statusCode)).Inc()
    })
}

type responseWriter struct {
    http.ResponseWriter
    statusCode int
}

func (rw *responseWriter) WriteHeader(code int) {
    rw.statusCode = code
    rw.ResponseWriter.WriteHeader(code)
}

健康检查实现

// 示例:后端健康检查机制
package health

import (
    "context"
    "net/http"
    "time"
)

type HealthChecker struct {
    backends map[string]*BackendStatus
    interval time.Duration
    timeout  time.Duration
}

type BackendStatus struct {
    URL    *url.URL
    Alive  bool
    mutex  sync.RWMutex
}

func (hc *HealthChecker) Start() {
    ticker := time.NewTicker(hc.interval)
    for range ticker.C {
        hc.checkAllBackends()
    }
}

func (hc *HealthChecker) checkAllBackends() {
    for _, backend := range hc.backends {
        go func(b *BackendStatus) {
            ctx, cancel := context.WithTimeout(context.Background(), hc.timeout)
            defer cancel()
            
            req, _ := http.NewRequestWithContext(ctx, "GET", b.URL.String()+"/health", nil)
            resp, err := http.DefaultClient.Do(req)
            
            b.mutex.Lock()
            b.Alive = err == nil && resp.StatusCode == http.StatusOK
            b.mutex.Unlock()
        }(backend)
    }
}

配置管理示例

// 示例:YAML 配置解析
package config

import (
    "gopkg.in/yaml.v2"
    "io/ioutil"
)

type Config struct {
    ListenAddr string   `yaml:"listen_addr"`
    Backends   []string `yaml:"backends"`
    HealthCheck struct {
        Interval string `yaml:"interval"`
        Timeout  string `yaml:"timeout"`
        Path     string `yaml:"path"`
    } `yaml:"health_check"`
    Metrics struct {
        Enabled bool   `yaml:"enabled"`
        Path    string `yaml:"path"`
    } `yaml:"metrics"`
}

func LoadConfig(path string) (*Config, error) {
    data, err := ioutil.ReadFile(path)
    if err != nil {
        return nil, err
    }
    
    var config Config
    if err := yaml.Unmarshal(data, &config); err != nil {
        return nil, err
    }
    
    return &config, nil
}

Simult 的性能数据表明其实现了高效的内存管理和并发处理。Go 的 goroutine 模型和 net/http 包的反向代理功能为这类负载均衡器提供了坚实的基础。Prometheus 指标的集成使得监控和告警配置更加直接,这对于生产环境运维至关重要。期待看到黑色星期五后的性能图表,这将为社区提供有价值的性能基准参考。

回到顶部