1 回复
更多关于Golang颜色轮问题解决方案探讨的实战系列教程也可以访问 https://www.itying.com/category-94-b0.html
这是一个经典的图着色问题变体,可以用图论和约束满足算法解决。以下是Go语言的实现方案:
package main
import (
"fmt"
"sort"
)
type Region struct {
id int
color string
adjacent []int
}
func solveColorWheel(regions []Region, colors []string) (map[int]string, bool) {
// 按相邻区域数量排序,优先处理约束多的区域
sort.Slice(regions, func(i, j int) bool {
return len(regions[i].adjacent) > len(regions[j].adjacent)
})
colorMap := make(map[int]string)
regionMap := make(map[int]Region)
for _, r := range regions {
regionMap[r.id] = r
}
return backtrack(regions, colors, colorMap, regionMap, 0)
}
func backtrack(regions []Region, colors []string, colorMap map[int]string,
regionMap map[int]Region, index int) (map[int]string, bool) {
if index == len(regions) {
return colorMap, true
}
current := regions[index]
// 获取可用颜色
available := getAvailableColors(current, colorMap, regionMap, colors)
for _, color := range available {
colorMap[current.id] = color
if solution, ok := backtrack(regions, colors, colorMap, regionMap, index+1); ok {
return solution, true
}
delete(colorMap, current.id)
}
return nil, false
}
func getAvailableColors(region Region, colorMap map[int]string,
regionMap map[int]Region, colors []string) []string {
used := make(map[string]bool)
// 检查相邻区域已使用的颜色
for _, adjID := range region.adjacent {
if adjColor, exists := colorMap[adjID]; exists {
used[adjColor] = true
}
}
// 收集可用颜色
var available []string
for _, color := range colors {
if !used[color] {
available = append(available, color)
}
}
return available
}
func main() {
// 示例:6个区域的色轮问题
regions := []Region{
{id: 1, adjacent: []int{2, 6}},
{id: 2, adjacent: []int{1, 3}},
{id: 3, adjacent: []int{2, 4}},
{id: 4, adjacent: []int{3, 5}},
{id: 5, adjacent: []int{4, 6}},
{id: 6, adjacent: []int{5, 1}},
}
colors := []string{"红", "绿", "蓝"}
solution, found := solveColorWheel(regions, colors)
if found {
fmt.Println("找到解决方案:")
for id, color := range solution {
fmt.Printf("区域 %d -> %s\n", id, color)
}
} else {
fmt.Println("无解")
}
}
对于更复杂的色轮问题(如链接中的12区域问题),可以使用带剪枝的回溯算法:
func solveComplexWheel() {
regions := []Region{
{id: 1, adjacent: []int{2, 12}},
{id: 2, adjacent: []int{1, 3, 9}},
{id: 3, adjacent: []int{2, 4}},
{id: 4, adjacent: []int{3, 5, 11}},
{id: 5, adjacent: []int{4, 6}},
{id: 6, adjacent: []int{5, 7, 10}},
{id: 7, adjacent: []int{6, 8}},
{id: 8, adjacent: []int{7, 9, 12}},
{id: 9, adjacent: []int{2, 8, 10}},
{id: 10, adjacent: []int{6, 9, 11}},
{id: 11, adjacent: []int{4, 10, 12}},
{id: 12, adjacent: []int{1, 8, 11}},
}
colors := []string{"A", "B", "C", "D"}
solution, found := solveColorWheel(regions, colors)
if found {
// 按区域ID排序输出
var ids []int
for id := range solution {
ids = append(ids, id)
}
sort.Ints(ids)
fmt.Println("12区域色轮解决方案:")
for _, id := range ids {
fmt.Printf("R%d: %s\n", id, solution[id])
}
}
}
这个实现使用了回溯算法,通过MRV(最少剩余值)启发式优化,优先处理约束最多的区域,提高了搜索效率。算法时间复杂度为O(c^n),其中c是颜色数量,n是区域数量,但通过剪枝在实际问题中表现良好。

