Python 数据分析之 pandas 进阶(二)如何使用?

python 数据分析之 pandas 进阶(二)

六、分组

对于“ group by ”操作,我们通常是指以下一个或多个操作步骤:

( Splitting )按照一些规则将数据分为不同的组 ( Applying )对于每组数据分别执行一个函数 ( Combining )将结果组合刀一个数据结构中 将要处理的数组是:

df = pd.DataFrame({
        'A': ['foo', 'bar', 'foo', 'bar', 'foo', 'bar', 'foo', 'foo'],
        'B': ['one', 'one', 'two', 'three', 'two', 'two', 'one', 'three'],
        'C': np.random.randn(8),
        'D': np.random.randn(8)
    })
df
A	B	C	        D

0 foo one 0.961295 -0.281012 1 bar one 0.901454 0.621284 2 foo two -0.584834 0.919414 3 bar three 1.259104 -1.012103 4 foo two 0.153107 1.108028 5 bar two 0.115963 1.333981 6 foo one 1.421895 -1.456916 7 foo three -2.103125 -1.757291

1 、分组并对每个分组执行 sum 函数:

df.groupby('A').sum()
C	        D

A bar 2.276522 0.943161 foo -0.151661 -1.467777

2 、通过多个列进行分组形成一个层次索引,然后执行函数:

df.groupby(['A', 'B']).sum()
	C	        D

A B bar one 0.901454 0.621284 three 1.259104 -1.012103 two 0.115963 1.333981 foo one 2.383191 -1.737928 three -2.103125 -1.757291 two -0.431727 2.027441

七、 Reshaping

Stack

tuples = list(zip(*[['bar', 'bar', 'baz', 'baz',
                     'foo', 'foo', 'qux', 'qux'],
                    ['one', 'two', 'one', 'two',
                     'one', 'two', 'one', 'two']]))
tuples

[(‘bar’, ‘one’), (‘bar’, ‘two’), (‘baz’, ‘one’), (‘baz’, ‘two’), (‘foo’, ‘one’), (‘foo’, ‘two’), (‘qux’, ‘one’), (‘qux’, ‘two’)]

index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second'])
df = pd.DataFrame(np.random.randn(8, 2), index=index, columns=['A', 'B'])
df2 = df[:4]
df2
 
		 A	        B
first	second		
bar	one	-0.907306	-0.009961
        two	0.905177	-2.877961
baz	one	-0.356070	-0.373447
        two	-1.496644	-1.958782
stacked = df2.stack()
stacked 
 
first  second   
bar    one     A   -0.907306
               B   -0.009961
       two     A    0.905177
               B   -2.877961
baz    one     A   -0.356070
               B   -0.373447
       two     A   -1.496644
               B   -1.958782
dtype: float64
stacked.unstack()
 
		A	        B
first	second		
bar	one	-0.907306	-0.009961
        two	0.905177	-2.877961
baz	one	-0.356070	-0.373447
        two	-1.496644	-1.958782
stacked.unstack(1)
 
	second	one	       two
first			
bar	A	-0.907306	0.905177
        B	-0.009961	-2.877961
baz	A	-0.356070	-1.496644
        B	-0.373447	-1.958782

八、相关操作

要处理的数组为:

df
        A	        B	        C	        D	F

2013-01-01 0.000000 0.000000 0.135704 5 NaN 2013-01-02 0.139027 1.683491 -1.031190 5 1 2013-01-03 -0.596279 -1.211098 1.169525 5 2 2013-01-04 0.367213 -0.020313 2.169802 5 3 2013-01-05 0.224122 1.003625 -0.488250 5 4 2013-01-06 0.186073 -0.537019 -0.252442 5 5

(一)、统计

1 、执行描述性统计:

df.mean()

A 0.053359 B 0.153115 C 0.283858 D 5.000000 F 3.000000 dtype: float64

2 、在其他轴上进行相同的操作:

df.mean(1)

2013-01-01 1.283926 2013-01-02 1.358266 2013-01-03 1.272430 2013-01-04 2.103341 2013-01-05 1.947899 2013-01-06 1.879322 Freq: D, dtype: float64

3 、对于拥有不同维度,需要对齐的对象进行操作, pandas 会自动的沿着指定的维度进行广播

dates
s = pd.Series([1,3,4,np.nan,6,8], index=dates).shift(2)
s

DatetimeIndex([‘2013-01-01’, ‘2013-01-02’, ‘2013-01-03’, ‘2013-01-04’, ‘2013-01-05’, ‘2013-01-06’], dtype=‘datetime64[ns]’, freq=‘D’)

2013-01-01 NaN 2013-01-02 NaN 2013-01-03 1 2013-01-04 3 2013-01-05 4 2013-01-06 NaN Freq: D, dtype: float64

(二)、 Apply

对数据应用函数:

df.apply(np.cumsum)
        A	        B	        C	        D	F

2013-01-01 0.000000 0.000000 0.135704 5 NaN 2013-01-02 0.139027 1.683491 -0.895486 10 1 2013-01-03 -0.457252 0.472393 0.274039 15 3 2013-01-04 -0.090039 0.452081 2.443841 20 6 2013-01-05 0.134084 1.455706 1.955591 25 10 2013-01-06 0.320156 0.918687 1.703149 30 15

df.apply(lambda x: x.max() - x.min())
 
A    0.963492
B    2.894589
C    3.200992
D    0.000000
F    4.000000
dtype: float64

(三)、字符串方法

Series 对象在其 str 属性中配备了一组字符串处理方法,可以很容易的应用到数组中的每个元素。

s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat'])
s.str.lower()

0 a 1 b 2 c 3 aaba 4 baca 5 NaN 6 caba 7 dog 8 cat dtype: object

九、时间序列

1 、时区表示:

rng = pd.date_range('3/6/2012 00:00', periods=5, freq='D')
ts = pd.Series(np.random.randn(len(rng)), rng)
ts

2012-03-06 -0.932261 2012-03-07 -1.405305 2012-03-08 0.809844 2012-03-09 -0.481539 2012-03-10 -0.489847 Freq: D, dtype: float64

ts_utc = ts.tz_localize('UTC')
ts_utc
 
2012-03-06 00:00:00+00:00   -0.932261
2012-03-07 00:00:00+00:00   -1.405305
2012-03-08 00:00:00+00:00    0.809844
2012-03-09 00:00:00+00:00   -0.481539
2012-03-10 00:00:00+00:00   -0.489847
Freq: D, dtype: float64

2 、时区转换

ts_utc.tz_convert('US/Eastern')

2012-03-05 19:00:00-05:00 -0.932261 2012-03-06 19:00:00-05:00 -1.405305 2012-03-07 19:00:00-05:00 0.809844 2012-03-08 19:00:00-05:00 -0.481539 2012-03-09 19:00:00-05:00 -0.489847 Freq: D, dtype: float64

3 、时区跨度转换

rng = pd.date_range('1/1/2012', periods=5, freq='M')
ts = pd.Series(np.random.randn(len(rng)), index=rng)
ps = ts.to_period()
ts
ps
ps.to_timestamp()

2012-01-31 0.932519 2012-02-29 0.247016 2012-03-31 -0.946069 2012-04-30 0.267513 2012-05-31 -0.554343 Freq: M, dtype: float64

2012-01 0.932519 2012-02 0.247016 2012-03 -0.946069 2012-04 0.267513 2012-05 -0.554343 Freq: M, dtype: float64

2012-01-01 0.932519 2012-02-01 0.247016

ts = pd.Series(np.random.randn(1000), index=pd.date_range('1/1/2000', periods=1000))
ts = ts.cumsum()
ts2012-03-01   -0.946069
2012-04-01    0.267513
2012-05-01   -0.554343
Freq: MS, dtype: float64

十、画图

ts = pd.Series(np.random.randn(1000), index=pd.date_range('1/1/2000', periods=1000))
ts = ts.cumsum()
ts

十一、 Categorical

从 0.15 版本开始, pandas 可以在 DataFrame 中支持 Categorical 类型的数据

df = pd.DataFrame({
        'id':[1,2,3,4,5,6],
        'raw_grade':['a','b','b','a','a','e']
    })
df
id	raw_grade

0 1 a 1 2 b 2 4 a 4 5 a 5 6 e

1 、将原始的 grade 转换为 Categorical 数据类型:

df['grade'] = df['raw_grade'].astype('category', ordered=True)
df['grade'] 

0 a 1 b 2 b 3 a 4 a 5 e Name: grade, dtype: category Categories (3, object): [a < b < e]

2 、将 Categorical 类型数据重命名为更有意义的名称:

df['grade'].cat.categories = ['very good', 'good', 'very bad']

3 、对类别进行重新排序,增加缺失的类别:

df['grade'] = df['grade'].cat.set_categories(['very bad', 'bad', 'medium', 'good', 'very good'])
df['grade']

0 very good 1 good 2 good 3 very good 4 very good 5 very bad Name: grade, dtype: category Categories (5, object): [very bad < bad < medium < good < very good]

4 、排序是按照 Categorical 的顺序进行的而不是按照字典顺序进行:

df.sort('grade')
id	raw_grade	grade

5 6 e very bad 1 2 b good 2 3 b good 0 1 a very good 3 4 a very good 4 5 a very good

5 、对 Categorical 列进行排序时存在空的类别:

df.groupby("grade").size()

grade very bad 1 bad 0 medium 0 good 2 very good 3 dtype: int64

以上代码不想自己试一试吗?

镭矿 raquant提供 jupyter 在线练习学习 python 的机会,无需安装 python 即可运行 python 程序。


Python 数据分析之 pandas 进阶(二)如何使用?

3 回复

我无法理解你的问题。


pandas 进阶(一)呢

回到顶部