Python 如何实现经典格雷厄姆价值投资策略?
Life is short,I use python to invest..囧
今天给大家分享一个超经典的价值投资策略
Benjamin Graham 是一位价值投资者。他比较有名的有 Graham number 和 Graham formula。
著名的 Graham number 公式

这个 22.5 是怎么来的呢?取自他的观点 -只买便宜的,投资 15 倍以下 pe 和 1.5 倍以下 pb 的股票。
著名的 Graham number 适用于 Defensive investor (防御型投资者),既然是防御保守型的投资者,那么除了较低的 PE 和 PB ratio 以外,还需要考察公司的其他几个方面(不然就选到垃圾股了)
抗风险的大公司,高市值,高销售
偿债能力,不会有破产风险 current ratio>2, long term debt<working captial
赚钱能力,利润持续增长
PE ratio < 15
PB ratio <1.5
这是价值投资的一个大概思路。每个月调仓一次。看下来中长期的投资回报还是相对稳健的。有兴趣的同学可以尝试修改完善。
这是收益图

这是源码
源码在 Ricequant实现
# 可以自己 import 我们平台支持的第三方 python 模块,、numpy 等。
import pandas as pd
import numpy as np
import datetime
import math
在这个方法中编写任何的初始化逻辑。context 对象将会在你的算法策略的任何方法之间做传递。
def init(context):
scheduler.run_monthly(rebalance,8)
你选择的证券的数据更新将会触发此段逻辑,例如日或分钟历史数据切片或者是实时数据切片更新
def handle_bar(context, bar_dict):
pass
def before_trading(context):
num_stocks = 10
#删选股票
fundamental_df = get_fundamentals(
query(
fundamentals.eod_derivative_indicator.pb_ratio,
fundamentals.eod_derivative_indicator.pe_ratio,
fundamentals.financial_indicator.inc_earnings_per_share,
fundamentals.financial_indicator.inc_profit_before_tax,
fundamentals.financial_indicator.quick_ratio,
fundamentals.financial_indicator.earnings_per_share,
fundamentals.financial_indicator.book_value_per_share,
)
.filter(
fundamentals.eod_derivative_indicator.pe_ratio<15
)
.filter(
fundamentals.eod_derivative_indicator.pb_ratio<1.5
)
.filter(
fundamentals.financial_indicator.inc_earnings_per_share>0
)
.filter(
fundamentals.financial_indicator.inc_profit_before_tax>0
)
.filter(
fundamentals.financial_indicator.current_ratio>2
)
.filter(
fundamentals.financial_indicator.quick_ratio>1
)
.order_by(
fundamentals.eod_derivative_indicator.market_cap.desc()
).limit(
num_stocks
)
)
context.fundamental_df = fundamental_df
context.stocks = context.fundamental_df.columns.values
def rebalance(context,bar_dict):
#调仓
for stock in context.portfolio.positions:
if stock not in context.fundamental_df:
order_target_percent(stock, 0)
weight = update_weights(context, context.stocks)
for stock in context.fundamental_df:
if weight != 0 and stock in context.fundamental_df:
order_target_percent(stock,weight)
def update_weights(context,stocks):
if len(stocks) == 0:
return 0
else:
weight = .95/len(stocks)
return weight
Python 如何实现经典格雷厄姆价值投资策略?
import pandas as pd
import numpy as np
import yfinance as yf
from datetime import datetime, timedelta
class GrahamValueStrategy:
"""
格雷厄姆价值投资策略实现
核心指标:
1. 市盈率(P/E) < 15
2. 市净率(P/B) < 1.5
3. 资产负债率 < 50%
4. 当前股价 < 净流动资产价值(NCAV)的2/3
"""
def __init__(self, symbols):
self.symbols = symbols
self.results = []
def calculate_ncav(self, balance_sheet, market_cap):
"""计算净流动资产价值(NCAV)"""
try:
current_assets = balance_sheet.loc['Total Current Assets'][0]
total_liabilities = balance_sheet.loc['Total Liabilities Net Minority Interest'][0]
ncav = current_assets - total_liabilities
ncav_per_share = ncav / balance_sheet.loc['Common Stock'][0]
return ncav_per_share
except:
return None
def analyze_stock(self, symbol):
"""分析单只股票是否符合格雷厄姆标准"""
try:
stock = yf.Ticker(symbol)
# 获取基本面数据
info = stock.info
financials = stock.financials
balance_sheet = stock.balance_sheet
# 提取关键指标
pe_ratio = info.get('trailingPE', None)
pb_ratio = info.get('priceToBook', None)
debt_to_equity = info.get('debtToEquity', None)
current_price = info.get('currentPrice', None)
market_cap = info.get('marketCap', None)
# 计算NCAV
ncav_per_share = self.calculate_ncav(balance_sheet, market_cap)
# 应用格雷厄姆标准
criteria = {
'symbol': symbol,
'pe_ok': pe_ratio is not None and pe_ratio < 15,
'pb_ok': pb_ratio is not None and pb_ratio < 1.5,
'debt_ok': debt_to_equity is not None and debt_to_equity < 0.5,
'ncav_ok': ncav_per_share is not None and current_price < (ncav_per_share * 2/3),
'current_price': current_price,
'pe_ratio': pe_ratio,
'pb_ratio': pb_ratio,
'debt_to_equity': debt_to_equity,
'ncav_per_share': ncav_per_share
}
# 计算综合得分(符合的条件数量)
criteria['score'] = sum([
criteria['pe_ok'],
criteria['pb_ok'],
criteria['debt_ok'],
criteria['ncav_ok']
])
return criteria
except Exception as e:
print(f"分析 {symbol} 时出错: {str(e)}")
return None
def run_screening(self):
"""运行股票筛选"""
print("开始格雷厄姆价值投资策略筛选...")
print("-" * 80)
for symbol in self.symbols:
result = self.analyze_stock(symbol)
if result:
self.results.append(result)
# 打印结果
status = "✓" if result['score'] >= 3 else "✗"
print(f"{status} {symbol:6} | "
f"PE: {result['pe_ratio']:6.2f} | "
f"PB: {result['pb_ratio']:6.2f} | "
f"负债率: {result['debt_to_equity']:6.2f} | "
f"得分: {result['score']}/4")
return self.results
def get_recommendations(self, min_score=3):
"""获取推荐股票列表"""
recommendations = [r for r in self.results if r['score'] >= min_score]
print(f"\n推荐股票(得分>={min_score}):")
print("=" * 80)
for rec in sorted(recommendations, key=lambda x: x['score'], reverse=True):
print(f"{rec['symbol']:6} | 价格: ${rec['current_price']:7.2f} | "
f"得分: {rec['score']}/4 | "
f"NCAV/股: ${rec['ncav_per_share']:7.2f if rec['ncav_per_share'] else 'N/A':>7}")
# 使用示例
if __name__ == "__main__":
# 示例股票列表(实际使用时替换为关注的股票)
symbols = ['AAPL', 'MSFT', 'GOOGL', 'BRK-B', 'JNJ', 'XOM', 'WMT', 'PG']
# 创建策略实例并运行
strategy = GrahamValueStrategy(symbols)
results = strategy.run_screening()
# 获取推荐
strategy.get_recommendations(min_score=3)
这个实现包含了格雷厄姆价值投资的四个核心标准:低市盈率、低市净率、低负债率,以及股价低于净流动资产价值。代码使用yfinance获取实时财务数据,计算各项指标,并给出综合评分。你可以通过修改symbols列表来筛选自己关注的股票。
建议:实际投资前请结合更多基本面分析和风险评估。

