Python菜鸡请教Python相关问题
有这么一堆数据:
#test.log
a, 1.324171
b, 0.000126
c, 1.970941
a, 1.469649
b, 0.000124
c, 0.512929
a, 1.290920
b, 0.000118
c, 0.259524
a, 0.495958
b, 0.000123
c, 0.910949
a, 1.268038
b, 0.000118
c, 1.016419
a, 1.856081
b, 0.000120
c, 1.400075
a, 1.314131
b, 0.000140
想要用 python 把左边的 key 一样的合并,但 value 要取它所有的和,还有平均值
搞了半天,发现搞不定,也是尴尬,以下还是个半成品,搞不下去了,报错,求大神指点一些简单方法
def two(file):
arr = []
with open(file, "r", encoding="utf-8") as f:
for i in f.readlines():
a = i.replace("\n", '').strip()
if a.split(",")[0] not in arr:
arr.append(a.split(",")[0])
ser = -1
while True:
ser += 1
try:
if a.split(",")[ser] == arr[ser]:
print(a.split(",")[ser])
except IndexError:
print("end!")
break
two(“test.log”)
Python菜鸡请教Python相关问题
pandas groupby sum?
我无法理解你的问题
了解一下 pandas ?导入生成个 dataframe 就行了
要用纯 python 处理,该怎么弄?
我的意思是,不要用这种一步到位的库
Dictionary 会用么?
抱歉,字典我知道,但以我的水平真心实现不了
#6 dict 是 python 内置的数据结构啊,不需要你自己实现
我的意思不是实现字典的功能,我的意思是用字典,我实现不了我的需求
就这需求还要上 pandas ?
https://gist.github.com/comynli/233412cd89bf671d7f9d754a3137be4f
dict 了解一下
In [18]: data = “”"
…: a, 1.324171
…: b, 0.000126
…: c, 1.970941
…: a, 1.469649
…: b, 0.000124
…: c, 0.512929
…: a, 1.290920
…: b, 0.000118
…: c, 0.259524
…: a, 0.495958
…: b, 0.000123
…: c, 0.910949
…: a, 1.268038
…: b, 0.000118
…: c, 1.016419
…: a, 1.856081
…: b, 0.000120
…: c, 1.400075
…: a, 1.314131
…: b, 0.000140
…: “”“
In [19]: result = {}
…: for line in data.splitlines():
…: if not line: continue
…: key, value = line.split(”,")
…: result.setdefault(key, []).append(float(value))
…:
In [20]: for key, values in result.items():
…: print(f"{key}: avg: {sum(values) / len(values)}, sum: {sum(values)}")
…:
a: avg: 1.2884211428571428, sum: 9.018948
b: avg: 0.00012414285714285714, sum: 0.000869
c: avg: 1.0118061666666667, sum: 6.070837
https://gist.github.com/laixintao/f4a186cea6c28fcf3dc696100458c410
非常感谢各位!学习了
def two(file):
data = {}
with open(file, “r”) as f:
while True:
s = f.readline()
if s is None or not s:
break
print(s.split(’, ‘))
k, v = s.split(’, ')
v = float(v)
if k not in data:
data[k] = {
‘num’: 1,
‘sum’: v,
‘avg’: v
}
else:
data[k][‘num’] += 1
data[k][‘sum’] += v
data[k][‘avg’] = data[k][‘sum’] / data[k][‘num’]
print(data)
two(‘test.txt’)
感谢
一行脚本拯救你
perl -nE ‘state %z; my = split(", “); $z{z[0]} += [1]; END { say for %z; } ’ < test.log
a
9.018948
b
0.000869
c
6.070837
perl6 -ne 'state %z; given .split(”, ") { %z{.[0]} += .[1].Rat; }; END { say %z; }’ < test.log
{a => 9.018948, b => 0.000869, c => 6.070837}
其实一个 for 循环就可以了
perl 好用,用 awk 能实现吗。。
awk 肯定能实现,不过我只懂基本的 awk 脚本
def stand(file):
datas = [str(line).replace("\n","").strip().split(’,’)[1] for line in open(file)]
s = sum([float(d) for d in datas])
m = s / len(datas)
print(s,m)
stand(“test.log”)
这是按照我自己的习惯写的
default_dict
http://chuantu.biz/t6/328/1529036276x-1404792211.jpg
求助,不知道为什么我这里运行会这样
https://gist.github.com/arthasgxy/9d1f8aae0c1e90dde5ec5e44032be4f5
字典用的少,感觉只能写出来这种又蠢又长的
发现越是看上去简单的功能,实现起来越是困难
>>> data = “”“a, 1.324171
b, 0.000126
c, 1.970941
a, 1.469649
b, 0.000124
c, 0.512929
a, 1.290920
b, 0.000118
c, 0.259524
a, 0.495958
b, 0.000123
c, 0.910949
a, 1.268038
b, 0.000118
c, 1.016419
a, 1.856081
b, 0.000120
c, 1.400075
a, 1.314131
b, 0.000140"”"
>>> import csv
>>> from itertools import groupby
>>> from operator import itemgetter as ig
>>> {k:sum(map(lambda x:float(ig(1)(x)), v)) for k, v in groupby(sorted(csv.reader(iter(data.splitlines())), key=ig(0)), key=ig(0))}
{‘a’: 9.018948, ‘b’: 0.000869, ‘c’: 6.070837}
>>>
from collections import defaultdict
logData=’’‘a, 1.324171
b, 0.000126
c, 1.970941
a, 1.469649
b, 0.000124
c, 0.512929
a, 1.290920
b, 0.000118
c, 0.259524
a, 0.495958
b, 0.000123
c, 0.910949
a, 1.268038
b, 0.000118
c, 1.016419
a, 1.856081
b, 0.000120
c, 1.400075
a, 1.314131
b, 0.000140’’‘
def solve(logData):
logList=[]
logDict=defaultdict(int)
for line in logData.splitlines():
newList = line.split(’,’)
k=newList[0]
v=float(newList[1])
logList.append(k)
logDict[k]+=v
for k,v in logDict.items():
avg = v/logList.count(k)
print("{0} 总和:{1} , 平均值:{2}".format(k,v,avg))
>>> solve(logData)
a 总和:9.018948 , 平均值:1.2884211428571428
b 总和:0.000869 , 平均值:0.00012414285714285714
c 总和:6.070837 , 平均值:1.0118061666666667
with open(‘data.txt’, ‘r’) as f:
data = f.read()
dict_data = {}
for i in data.split(’\n’):
if i.split(’,’)[0] not in dict_data:
dict_data[i.split(’,’)[0]]=float(i.split(’,’)[1])
dict_data[i.split(’,’)[0]]=dict_data[i.split(’,’)[0]]+float(i.split(’,’)[1])
print(dict_data)
我是个新手菜鸟,不知道这种想法对不对。。。
with open(‘data.txt’, ‘r’) as f:
data = f.read()
dict_data = {}
for i in data.split(’\n’):
if i.split(’,’)[0] not in dict_data:
dict_data[i.split(’,’)[0]] = float(i.split(’,’)[1])
else:
dict_data[i.split(’,’)[0]] = dict_data[i.split(’,’)[0]] + float(i.split(’,’)[1])
print(dict_data)
不好意思 忘了个 else:
拷到 Excel 里一个数据透视表搞定美滋滋。
什么鬼,V 站 markdown 失效了?全是代码坨啊。。。
哈哈 perl 自带代码混淆
本来就是这样,只支持楼主的。。不然还需要什么 chrome markdown 插件(外面那个帖子)
d = {}
逐行
k, v = (i.strip() for i in text.split(’,’))
d.setdefault(k, []) # 建个列表
d[k].append(float(v))
这样直观一点,然后求值啥的慢慢折腾呗。
因为是 yield, 所以是一个生成器
我意思一下:python<br>temp = {}<br>for i, j in dict or tuple:<br> if i in temp:<br> temp[i] = float(j)<br> else:<br> temp[i] += float(j)<br>
噢好吧,果然没用最垃圾只有更垃圾
def pivot_table():
with open(‘data.txt’, ‘r’) as f:
all_data = f.readlines()[1:]
keys = []
result = {}
count = {}
for data in all_data:
content = data.split(’,’)
key = content[0]
value = float(content[1].strip())
# 添加键
if key not in keys:
keys.append(key)
result[key] = value
count[key] = 1
else:
result[key] += value
count[key] += 1
print(‘元素:’, keys)
print(‘元素个数:’, count)
print(‘和:’, result)
print(’\n 统计信息(元素,和,平均值):’)
for k, v in result.items():
avg = v / count[k]
print(k, v, avg)
----------输出-----------
元素: [‘a’, ‘b’, ‘c’]
元素个数: {‘a’: 7, ‘b’: 7, ‘c’: 6}
和: {‘a’: 9.018948, ‘b’: 0.000869, ‘c’: 6.070837}
统计信息(元素,和,平均值):
a 9.018948 1.2884211428571428
b 0.000869 0.00012414285714285714
c 6.070837 1.0118061666666667
def two(file):
num_dict = {}
with open(file, “r”, encoding=“utf-8”) as f:
for i in f.readlines():
a = i.replace("\n", ‘’).strip()
line_list = a.split(",")
if line_list[0] not in num_dict:
num_dict[line_list[0]] = [line_list[1], 1]
else:
num_dict[line_list[0]] = [float(num_dict[line_list[0]][0]) + float(line_list[1]), int(num_dict[line_list[0]][1]) + 1]
for x in num_dict:
num_dict[x].append(num_dict[x][0] / num_dict[x][1])
print(num_dict)
two("/Users/yourname/program/test/test.log")
def text = ‘’‘a, 1.324171
b, 0.000126
c, 1.970941
a, 1.469649
b, 0.000124
c, 0.512929
a, 1.290920
b, 0.000118
c, 0.259524
a, 0.495958
b, 0.000123
c, 0.910949
a, 1.268038
b, 0.000118
c, 1.016419
a, 1.856081
b, 0.000120
c, 1.400075
a, 1.314131
b, 0.000140
’’’
// file.readLines().collect{
text.readLines().collect{
it.split(’,’).trim()
}.groupBy{
it[0]
}.collectEntries{k, vList ->
[(k): [sum: def sum = vList.sum{ it[1] as BigDecimal }, average: sum / vList.size()]]
}
/ result: [a:[sum:9.018948, average:1.2884211429], b:[sum:0.000869, average:0.0001241429], c:[sum:6.070837, average:1.0118061667]]
groovy 写的,groovy 有的 python 肯定有,语法方法名啥的改一下应该就差不多了 */
#!/usr/bin/env python
# -- coding: utf-8 --
a = {}
with open(‘test.log’,‘r’) as f:
for i in f:
j = i.split(’,’)
a.setdefault(j[0],[]).append(float(j[1]))
result = {}
for k,v in a.items():
s = sum(v)
result.setdefault(k,[]).append(s)
result[k].append(s/len(v))
print result
# {‘a’: [9.018948, 1.2884211428571428], ‘c’: [6.070837, 1.0118061666666667], ‘b’: [0.000869, 0.00012414285714285714]}
import collections
d = “”“a, 1.324171
b, 0.000126
c, 1.970941
a, 1.469649
b, 0.000124
c, 0.512929
a, 1.290920
b, 0.000118
c, 0.259524
a, 0.495958
b, 0.000123
c, 0.910949
a, 1.268038
b, 0.000118
c, 1.016419
a, 1.856081
b, 0.000120
c, 1.400075
a, 1.314131
b, 0.000140"”"
L = [(i[0], i[3:]) for i in d.split(’\n’)]
data_dict = collections.defaultdict(int)
for i, j in L:
data_dict[i] += float(j)
print(data_dict)
讲下原理的东西,map reduce 可以了解一下,首先把数据分组归类
map (lambda x: { value: x.key, key: x.key, count: 1})
按上面的把数据按 key 分组放好
然后执行归约函数,将数据集合归约为一个最终结果
reduce(lambda acc, curr: merge(acc,curr), mapdata )
merge 根据 key 将相同 key 的数值相加得到总合,count 相加得到次数,总和除以次数可以得平均值
最后的结果应该是 {a: { value,count,avg}}
手机码字,凑合看吧
没人贴 pandas 的,我就献个丑吧:
···
import pandas as pd
data_file = ‘data.txt’
data_df = pd.read_csv(data_file, comment=’#’, names=[‘key’, ‘value’])
sums = data_df.groupby(‘key’).sum()
means = data_df.groupby(‘key’).mean()
···
这个简单
convert_list = {}
for line in open(‘test.log’):
k, v = line.split(’,’)
convert_list.setdefault(k,[]).append(float(v.strip()))
# print(convert_list)
for k, v in convert_list.items():
total_sum = sum(v)
avg = total_sum / len(v)
print(total_sum)
print(avg)


