Flutter图像处理插件flutter_image_processing的使用
Flutter图像处理插件flutter_image_processing的使用
1. Introduction
flutter_image_processing
插件项目为 iOS 和 Android 提供了基于 OpenCV 4.3.0 库的图像处理功能。这些功能通过将 OpenCV 教程中提供的 C++ 图像处理代码适配到 Flutter 中实现。项目使用 FFI(Foreign Function Interface)库将这些 C++ 函数绑定到 Flutter 中。
目前,我们提供了两个函数:高斯模糊(Gaussian Blur)和 Canny 边缘检测器(Canny Edge Detector)。未来,我们将继续更新和扩展功能,提供更多图像处理能力。
在示例代码中,你将注意到 image_picker
的使用。此外,请注意,示例在模拟器上运行时无法进行测试,建议在实际设备上进行测试。
2. Screenshots
Home | Select Image | Gaussian Blur Result | Canny Edge Detector Result |
---|---|---|---|
3. Setup
flutter_image_processing
插件需要 image_picker
来选择图片。image_picker
的权限设置可以在其各自的插件安装文档中找到,适用于 iOS 和 Android。
4. Usage
以下是一个完整的示例代码,展示了如何使用 flutter_image_processing
插件进行高斯模糊和 Canny 边缘检测。
示例代码
import 'dart:io';
import 'package:flutter/material.dart';
import 'package:flutter_image_processing/flutter_image_processing.dart' as flutter_image_processing;
import 'package:image_picker/image_picker.dart';
void main() {
runApp(MaterialApp(
home: const MyApp(),
));
}
class MyApp extends StatefulWidget {
const MyApp({super.key});
@override
State<MyApp> createState() => _MyAppState();
}
class _MyAppState extends State<MyApp> {
final ImagePicker _picker = ImagePicker();
late String version;
Image _img = Image.asset('assets/img/default.jpg');
@override
void initState() {
super.initState();
version = flutter_image_processing.opencvVersion();
}
@override
Widget build(BuildContext context) {
const textStyle = TextStyle(fontSize: 25);
const spacerSmall = SizedBox(height: 10);
return Scaffold(
appBar: AppBar(
title: const Text('flutter_image_processing example'),
),
body: SingleChildScrollView(
child: Container(
padding: const EdgeInsets.all(10),
child: Column(
children: [
spacerSmall,
Text(
'OpenCV Version: $version',
style: textStyle,
textAlign: TextAlign.center,
),
SizedBox(height: 20),
ElevatedButton(
onPressed: () async {
final imageFile = await _picker.pickImage(source: ImageSource.gallery);
final imagePath = imageFile?.path ?? "none";
await flutter_image_processing.gaussianBlur(imagePath);
setState(() {
_img = Image.file(File(imagePath));
});
},
child: const Text("Run GaussianBlur"),
),
SizedBox(height: 20),
ElevatedButton(
onPressed: () async {
final imageFile = await _picker.pickImage(source: ImageSource.gallery);
final imagePath = imageFile?.path ?? "none";
await flutter_image_processing.cannyDetector(imagePath);
setState(() {
_img = Image.file(File(imagePath));
});
},
child: const Text("Run CannyDetector"),
),
SizedBox(height: 20),
ElevatedButton(
onPressed: () async {
final imageFile = await _picker.pickImage(source: ImageSource.gallery);
final imagePath = imageFile?.path ?? "none";
await flutter_image_processing.medianBlur(imagePath);
setState(() {
_img = Image.file(File(imagePath));
});
},
child: const Text("Run medianBlur"),
),
SizedBox(height: 20),
ElevatedButton(
onPressed: () async {
final imageFile = await _picker.pickImage(source: ImageSource.gallery);
final imagePath = imageFile?.path ?? "none";
await flutter_image_processing.bilateralFilter(imagePath);
setState(() {
_img = Image.file(File(imagePath));
});
},
child: const Text("Run bilateralFilter"),
),
SizedBox(height: 20),
Center(child: _img),
],
),
),
),
);
}
void test() {
List<String> a;
}
}
参考
- OpenCV Image Processing Tutorial: https://docs.opencv.org/4.3.0/d7/da8/tutorial_table_of_content_imgproc.html
- image picker: https://pub.dev/packages/image_picker
希望这个示例对你有所帮助!如果你有任何问题或需要进一步的帮助,请随时提问。
更多关于Flutter图像处理插件flutter_image_processing的使用的实战系列教程也可以访问 https://www.itying.com/category-92-b0.html
更多关于Flutter图像处理插件flutter_image_processing的使用的实战系列教程也可以访问 https://www.itying.com/category-92-b0.html
当然,以下是如何在Flutter项目中使用flutter_image_processing
插件来进行图像处理的示例代码。这个插件提供了多种图像处理功能,比如滤镜、调整亮度和对比度等。
首先,你需要在pubspec.yaml
文件中添加flutter_image_processing
依赖:
dependencies:
flutter:
sdk: flutter
flutter_image_processing: ^0.10.0 # 请根据需要检查最新版本号
然后,运行flutter pub get
来安装依赖。
接下来是一个简单的示例,展示如何使用flutter_image_processing
插件对图像应用滤镜:
import 'package:flutter/material.dart';
import 'package:flutter_image_processing/flutter_image_processing.dart';
import 'dart:typed_data';
import 'dart:ui' as ui;
void main() {
runApp(MyApp());
}
class MyApp extends StatelessWidget {
@override
Widget build(BuildContext context) {
return MaterialApp(
home: ImageProcessingScreen(),
);
}
}
class ImageProcessingScreen extends StatefulWidget {
@override
_ImageProcessingScreenState createState() => _ImageProcessingScreenState();
}
class _ImageProcessingScreenState extends State<ImageProcessingScreen> {
Uint8List? _imageBytes;
Uint8List? _processedImageBytes;
@override
void initState() {
super.initState();
// 加载本地图片或者从网络获取图片数据
rootBundle.load('assets/sample_image.jpg').then((value) {
setState(() {
_imageBytes = value.buffer.asUint8List();
});
applyFilter();
});
}
void applyFilter() async {
if (_imageBytes == null) return;
final imageProvider = MemoryImage(_imageBytes!);
final image = await imageProvider.image;
final painter = ImagePainter(_imageBytes!);
// 转换为灰度图像
final grayImageBytes = await painter.toGrayscale();
// 应用Sepia滤镜
final sepiaImageBytes = await painter.applySepiaFilter(intensity: 0.8);
// 在这里你可以保存或者显示处理后的图像
setState(() {
_processedImageBytes = sepiaImageBytes;
});
}
@override
Widget build(BuildContext context) {
return Scaffold(
appBar: AppBar(
title: Text('Flutter Image Processing Demo'),
),
body: Center(
child: Column(
mainAxisAlignment: MainAxisAlignment.center,
children: <Widget>[
if (_imageBytes != null)
Image.memory(_imageBytes!),
if (_processedImageBytes != null)
SizedBox(height: 20),
if (_processedImageBytes != null)
Image.memory(_processedImageBytes!),
],
),
),
);
}
}
class ImagePainter {
final Uint8List imageBytes;
ImagePainter(this.imageBytes);
Future<Uint8List> toGrayscale() async {
final image = Image.memory(imageBytes);
final imageProcessor = ImageProcessor(image);
final grayImage = await imageProcessor.toGrayscale();
return (await grayImage.toByteData(format: ui.ImageByteFormat.png))!.buffer.asUint8List();
}
Future<Uint8List> applySepiaFilter({required double intensity}) async {
final image = Image.memory(imageBytes);
final imageProcessor = ImageProcessor(image);
final sepiaImage = await imageProcessor.applySepiaFilter(intensity: intensity);
return (await sepiaImage.toByteData(format: ui.ImageByteFormat.png))!.buffer.asUint8List();
}
}
说明:
- 加载图像:在
initState
方法中,我们从本地资产加载一张图片。你也可以从网络加载图片,只需要相应地调整代码。 - 图像处理:在
applyFilter
方法中,我们创建了一个ImagePainter
实例,并调用其方法来将图像转换为灰度图像和应用Sepia滤镜。 - 显示图像:使用
Image.memory
来显示原始和处理后的图像。
注意:由于flutter_image_processing
插件的API可能会随着版本更新而变化,因此请确保参考最新的官方文档和示例代码。如果插件提供了更多的图像处理功能,比如调整亮度、对比度等,你可以参考文档来扩展这个示例。