Python中安装Spark后运行run-example SparkPi 2正常,但pyspark报错的原因是什么?

下边是错误日志,这是为啥?有人指定么,感谢感谢!

Python 3.5.2+ (default, Sep 22 2016, 12:18:14)
[GCC 6.2.0 20160927] on linux
Type "help", "copyright", "credits" or "license" for more information.
2018-04-04 14:44:34 WARN  Utils:66 - Your hostname, ubuntu resolves to a loopback address: 127.0.1.1; using 172.16.0.2 instead (on interface enp2s0)
2018-04-04 14:44:34 WARN  Utils:66 - Set SPARK_LOCAL_IP if you need to bind to another address
2018-04-04 14:44:42 WARN  NativeCodeLoader:62 - Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).
Welcome to
      ____              __
     / __/__  ___ _____/ /__
    _\ \/ _ \/ _ `/ __/  '_/
   /__ / .__/\_,_/_/ /_/\_\   version 2.3.0
      /_/

Using Python version 3.5.2+ (default, Sep 22 2016 12:18:14) SparkSession available as ‘spark’. >>> text_file = sc.textFile("/home/sujian/log.log") >>> text_file.count() Traceback (most recent call last): File “<stdin>”, line 1, in <module> File “/usr/local/spark/python/pyspark/rdd.py”, line 1056, in count return self.mapPartitions(lambda i: [sum(1 for _ in i)]).sum() File “/usr/local/spark/python/pyspark/rdd.py”, line 1047, in sum return self.mapPartitions(lambda x: [sum(x)]).fold(0, operator.add) File “/usr/local/spark/python/pyspark/rdd.py”, line 921, in fold vals = self.mapPartitions(func).collect() File “/usr/local/spark/python/pyspark/rdd.py”, line 824, in collect port = self.ctx._jvm.PythonRDD.collectAndServe(self._jrdd.rdd()) File “/usr/local/spark/python/lib/py4j-0.10.6-src.zip/py4j/java_gateway.py”, line 1160, in call File “/usr/local/spark/python/pyspark/sql/utils.py”, line 63, in deco return f(*a, **kw) File “/usr/local/spark/python/lib/py4j-0.10.6-src.zip/py4j/protocol.py”, line 320, in get_return_value py4j.protocol.Py4JJavaError: An error occurred while calling z:org.apache.spark.api.python.PythonRDD.collectAndServe. : java.lang.NullPointerException at org.apache.spark.util.FieldAccessFinder$$anon$3$$anonfun$visitMethodInsn$2.apply(ClosureCleaner.scala:449) at org.apache.spark.util.FieldAccessFinder$$anon$3$$anonfun$visitMethodInsn$2.apply(ClosureCleaner.scala:432) at scala.collection.TraversableLike$WithFilter$$anonfun$foreach$1.apply(TraversableLike.scala:733) at scala.collection.mutable.HashMap$$anon$1$$anonfun$foreach$2.apply(HashMap.scala:103) at scala.collection.mutable.HashMap$$anon$1$$anonfun$foreach$2.apply(HashMap.scala:103) at scala.collection.mutable.HashTable$class.foreachEntry(HashTable.scala:230) at scala.collection.mutable.HashMap.foreachEntry(HashMap.scala:40) at scala.collection.mutable.HashMap$$anon$1.foreach(HashMap.scala:103) at scala.collection.TraversableLike$WithFilter.foreach(TraversableLike.scala:732) at org.apache.spark.util.FieldAccessFinder$$anon$3.visitMethodInsn(ClosureCleaner.scala:432) at org.apache.xbean.asm5.ClassReader.a(Unknown Source) at org.apache.xbean.asm5.ClassReader.b(Unknown Source) at org.apache.xbean.asm5.ClassReader.accept(Unknown Source) at org.apache.xbean.asm5.ClassReader.accept(Unknown Source) at org.apache.spark.util.ClosureCleaner$$anonfun$org$apache$spark$util$ClosureCleaner$$clean$14.apply(ClosureCleaner.scala:262) at org.apache.spark.util.ClosureCleaner$$anonfun$org$apache$spark$util$ClosureCleaner$$clean$14.apply(ClosureCleaner.scala:261) at scala.collection.immutable.List.foreach(List.scala:381) at org.apache.spark.util.ClosureCleaner$.org$apache$spark$util$ClosureCleaner$$clean(ClosureCleaner.scala:261) at org.apache.spark.util.ClosureCleaner$.clean(ClosureCleaner.scala:159) at org.apache.spark.SparkContext.clean(SparkContext.scala:2292) at org.apache.spark.SparkContext.runJob(SparkContext.scala:2066) at org.apache.spark.SparkContext.runJob(SparkContext.scala:2092) at org.apache.spark.rdd.RDD$$anonfun$collect$1.apply(RDD.scala:939) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112) at org.apache.spark.rdd.RDD.withScope(RDD.scala:363) at org.apache.spark.rdd.RDD.collect(RDD.scala:938) at org.apache.spark.api.python.PythonRDD$.collectAndServe(PythonRDD.scala:153) at org.apache.spark.api.python.PythonRDD.collectAndServe(PythonRDD.scala) at jdk.internal.reflect.NativeMethodAccessorImpl.invoke0(java.base@9-Ubuntu/Native Method) at jdk.internal.reflect.NativeMethodAccessorImpl.invoke(java.base@9-Ubuntu/NativeMethodAccessorImpl.java:62) at jdk.internal.reflect.DelegatingMethodAccessorImpl.invoke(java.base@9-Ubuntu/DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(java.base@9-Ubuntu/Method.java:535) at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244) at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357) at py4j.Gateway.invoke(Gateway.java:282) at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132) at py4j.commands.CallCommand.execute(CallCommand.java:79) at py4j.GatewayConnection.run(GatewayConnection.java:214) at java.lang.Thread.run(java.base@9-Ubuntu/Thread.java:843)

>>>


Python中安装Spark后运行run-example SparkPi 2正常,但pyspark报错的原因是什么?

10 回复

这个问题很典型。核心原因是你的环境变量 PYSPARK_PYTHON 没有正确指向你安装 Spark 时使用的 Python 解释器。

run-example SparkPi 2 使用的是 Spark 自带的 Scala/Java 引擎,它不依赖你的本地 Python 环境,所以能跑通。

pyspark 启动的是一个 Python REPL,它需要调用本地的 Python 解释器来执行。如果 Spark 找不到或者找错了 Python(比如找到了一个没有安装必要依赖的 Python 版本),就会报错。常见的错误信息会包含 Python in worker has different version 或者直接导入失败。

解决办法:

在启动 pyspark 前,在终端里显式地设置 PYSPARK_PYTHON 环境变量,把它指向你系统中那个“正确”的、安装了 py4j 等包的 Python 解释器的完整路径。

具体操作(Linux/Mac 示例):

# 首先,找到你打算用的 python 的路径。通常是你用 conda 或 venv 创建的虚拟环境里的 python。
# 例如,如果你用 conda 环境名叫 `my_spark_env`:
which python
# 假设输出是 /home/yourname/miniconda3/envs/my_spark_env/bin/python

# 然后,在启动 pyspark 前设置环境变量
export PYSPARK_PYTHON=/home/yourname/miniconda3/envs/my_spark_env/bin/python
# 接着再启动 pyspark
pyspark

更一劳永逸的方法:

把上面这行 export ... 命令添加到你的 shell 配置文件里(比如 ~/.bashrc~/.zshrc),这样每次打开终端都会自动设置。

一句话总结: 设置 PYSPARK_PYTHON 环境变量,让它指向你想要的 Python 解释器绝对路径。

#1 我这个不一样啊,NullPointerException,并不是读不到文件异常啊,好怪

你的文件 /home/sujian/log.log 是在 hdfs 里面还是本地文件?

<br> at org.apache.xbean.asm5.ClassReader.a(Unknown Source)<br> at org.apache.xbean.asm5.ClassReader.b(Unknown Source)<br> at org.apache.xbean.asm5.ClassReader.accept(Unknown Source)<br> at org.apache.xbean.asm5.ClassReader.accept(Unknown Source)<br>

看起来好像是 xbean 报的,要么把 xbean 的依赖移除掉试试?

#3 本地文件的啊,如果文件读不到应该报的是 InvalidInputException 才是

#4 要怎么移除。。这还能移除啊?



好像 xbean 这个依赖不是 spark 自带的吧?

要么你去 spark-env.sh 里面看看有没有特殊指定 jars 或者 packages

不对,好像我这个猜测有问题,你无视掉吧

#8 conf 下还是 spark-env.sh.template,那么应该没有配置的吧,这也太奇怪了。。

回到顶部